
Knowledge Representation and Learning for RoboticSystems
B.Tech Seminar ReportSubmitted in partial ful�llment of the requirementsfor the degree ofBachelor of TechnologybySarvjeet SinghRoll No: 99005029under the guidance ofDr. Pushpak Bhattacharyya

aDepartment of Computer Science and EngineeringIndian Institute of Technology, BombayMumbai

Contents1 Introduction 11.1 Motivation . 11.2 Some desirable qualities of autonomous robots 21.3 Report layout . 22 The Society of Mind 22.1 Introduction . 22.2 Philosophy and Assumptions . 32.3 Agents, Agencies and Societies . 32.4 Learning . 42.5 Theory of Memory . 52.6 Criticism . 73 Subsumption Architecture 73.1 Motivation . 73.2 Traditional decomposition into functional modules Vs. Decomposition based ontask achieving behaviors . 83.3 Methodological Assumptions . 83.4 Architecture Description . 93.4.1 Levels of Competence . 93.4.2 Layers of Controls . 103.4.3 Communication between layers . 113.5 Extensions to Subsumption Architecture . 123.5.1 Hormonal Activation . 123.5.2 Planning and Learning . 133.6 Criticism of Subsumption architecture . 144 Reinforcement learning 154.1 Introduction and Motivation . 154.2 A formal speci�cation of the Reinforcement Learning problem 154.2.1 Agent and its Environment . 154.2.2 Relationship between Goals and Rewards 164.2.3 Returns . 174.2.4 Markov Decision Processes . 184.2.5 Value Functions . 184.2.6 Optimal Value Functions . 194.2.7 Finding Policy . 205 Conclusion and future work 20
i

AbstractThis seminar report focuses on "Knowledge Representation and Learning for Robotic Systems".Three theories have been studied in this report namely Society of Mind, Subsumption Archi-tecture and Reinforcement Learning. Society of Mind describes a basic framework for buildingintelligence. A model of building behavior-based autonomous robots is given in SubsumptionArchitecture. A mathematical model of unsupervised learning is presented in Reinforcementlearning. I have outlined relative strengths and weaknesses of these theories and cited a possibleway to remove the latter by combining the last two theories.

ii

1 Introduction1.1 MotivationUnderstanding intelligence is man's dream for centuries. Intelligence that is built into naturalsystems like Humans is our best guide and motivation for understanding intelligence. We wantto know how we can build this intelligence in our arti�cial systems. Researchers in Arti�cialIntelligence are interested in understanding the properties of living organisms so that they canbuild their own arti�cial systems that exhibit these properties for useful purposes. Many theorieshave been proposed to explain intelligence of biological systems we see all around us and buildsimilar systems.There are many types of arti�cial systems we build. On one hand are the systems that resideinside a computer. They are basically agents acting in an information domain. Generally thesesystems require limited knowledge of a domain. Examples of these systems are numerous helperutilities we use in our computers. They rarely interact with the physical world. These systemsare relatively easy to make and o�ers limited insight into natural systems. On the other endof spectrum are the control systems of completely autonomous robotic creatures. These robotsare required to interact with the real physical world. Because of the enormous complexity anduncertainty of this world, they require knowledge of broad domains in order to survive andfunction properly. Some of these kind of systems are built to operate in simulated worlds thatapproximately (and often poorly) model the real physical world. These systems serve no usefulpurpose other than giving chance to test and develop more theories. More insight in intelligenceis gained by the systems that operate in real worlds. These robots live and operate in physicalworld and carry out some tasks which has some utility for whoever wanted the robots to existand live in this world.Recently there has been a shift in Arti�cial intelligence community towards building robotsthat operate in the real world instead of programs running in simulated environments. Theintelligence systems, built by nature, which we take as our role models, interact with the realcomplex world. Sensors, actuators, power sources and intelligence are important components ofsuch creatures. Choices in any part of the system architecture have major impacts upon otherparts of the system. While we may be tempted to think that we can isolate the intelligencecomponent and study it by itself, but, in general, it is very dangerous assumption. [12].Complex behavior need not be result of extremely complex control system. Complex behaviormay be simply re
ection of complex environment. It may be observer who ascribes complexityto an organism and not necessarily its designer.Autonomous mobile robots, equipped with sensors, actuators and intelligent control system,which are living and interacting with the real world are quite similar to the intelligence systemsof the biological world. As discussed above building such systems might give us better insightinto intelligence. Thus we would like to study how we can build intelligent control systems forsuch robots.This seminar presents and discusses some of the important models and theories of Knowledgerepresentation and learning for robotic systems. Some of the important desirable qualities thatwe are looking in systems that result using these models are discussed in next section.
1

1.2 Some desirable qualities of autonomous robotsFrom any model of building the control system of an autonomous robot, some qualities aredesired [12]:� Convergence: We should be able to demonstrate or prove that a robot is programmedin such a way that its external behavior indeed achieves a particular goal successfully.� Complexity: The robot should be able to deal with the complexity of the real worldenvironments. It should shift its attention on relevant sensations rather than being over-whelmed with multitudes of data.� Uncertainty in sensors: The robot should take into account the inherent uncertaintiesand noise in sensors.� Coherence: Even though many behaviors may be active at once, or are being activelyswitched on or o�, The robot should still appear to have coherence of actions and goals toan outside observer.� Salience: The behavior that are active at a given time should be salient to the situationthe creature �nds itself in.� Adequacy: The behavior selection mechanism must operate in such a way that the longterm goals that creature is supposed to achieve are met.1.3 Report layoutSection 2 introduces and discusses the theory of Society of Mind. It lays down a broad frame-work for explaining intelligence and building its models. In section 3, we explain and exploreSubsumption Architecture, a behavior based model that was quite successful in building simpleand mostly re
exive robots. Introduction to Reinforcement learning, a concrete mathematicalapproach to unsupervised learning is given in section 4. Conclusions and future work that canbe done to improve these theories are presented in section 5.2 The Society of Mind2.1 IntroductionThis theory was put forward by Marvin Minsky in his famous book - The Society of Mind [1].This theory puts forward ideas that were developed through many decades of careful thinkingabout how minds, natural and arti�cial, might work. It tries to explain how mind can beexplained by collections of simple processes and their interconnections and dependence. Though,this theory talks about human mind most of the time but the same ideas can very well beapplied in robotics to make their control systems. Careful thinking will tell us that our mind isnothing but a control system for a complex machine - Humans. Humans are the best examplesof intelligent systems we have encountered so far. So it seems only natural that we shouldstudy human mind and �nd out how it works and apply those ideas to build better robots.The ideas given in this theory are essentially vague. They give a broad outline of organizationof mind which enables to solve and do such vast variety of tasks and problems. This theory2

has incorporated and uni�ed many ideas from psychology, arti�cial intelligence and computerscience.2.2 Philosophy and AssumptionsThis theory assumes that brain is functionally modular and useful generalizations can be madeabout the operation of such modules and the inter module interactions. In order to understandmind it is essential that we describe whole working of mind in terms of simpler things thathas no intelligence of its own. If any of these simpler particles are intelligent, we have toexplain in turn their intelligence. Thus we will be caught in a circular loop. This theoryconcentrates on processes and tasks that are termed as easy, obvious or common-sensical. Overyears many workers in the �eld of Arti�cial intelligence have found out that these tasks are themost di�cult to program in a arti�cial creature. In general, we are least aware of things that outminds do best. Another important assumption is that people are nothing more than extremelycomplex machines or robots. The cornerstone of Minsky's theory is the conception of mindsas collections of enormous numbers of semi-autonomous, intricately connected agents that arethemselves mindless. These agents by themselves cannot perform any thought processes, butwhen combined into "societies", true intelligence arises.2.3 Agents, Agencies and SocietiesAs mentioned earlier, for any theory that tried to explain mind, it is essential that the particlesthat those theories divide the mind into are themselves mindless and unintelligent. These par-ticles should be smaller and simpler than anything we would consider as smart. The particlesthat this theory has divided mind into are known as Agents. Agents are the building blocks ofour mind. More formally as described in [1], page 326, Agent is:Any part or process of the mind that by itself is simple enough to understand -even though the interactions among groups of such agents may produce phenomenathat are much harder to understand.Consider, for example, a child trying to build towers from blocks. To do this complex activitymany agents inside that child would be active. A few of these agents and their functions are:1. BUILDER: Build a tower.2. BEGIN: Start building a tower.3. ADD: Add to the height of already built tower.4. FIND: Find a block to add in the tower.5. GET: Retrieve a block.6. PUT: Puts the block in hand on the tower.7. SEE: Finds a block.8. GRASP: Pick up a block.9. MOVE: Moves the block held in hand. 3

ADD ENDBEGIN

BUILDER

FIND−−PLACE FIND

SEE

GET

GRASP

PUT

MOVE RELEASEFigure 1: Agents in a Bureaucracy10. RELEASE: Releases the block.11. END: Finishes building tower.12. FIND-PLACE: Finds appropriate place for the tower.Each of these agents has a goal. Whenever that agent is aroused, it will try to achieve itsgoal. From this example of agents it is not clear that these agents are simple. For example,work of BUILDER agent seems quite complex. The catch is that these agents are not isolated.They are interconnected with each other and possibly other agents to do their work. They aretaking help of other agents to achieve their goal.As a agent BUILDER does no intelligent work but merely turns on BEGIN, ADD and END.In turn ADD just orders FIND, PUT and GET to do their jobs. Thus the agents are arrangedinto hierarchies. Following �gure explains the hierarchy of above agents.There is no complexity in agents itself. It arises from the complex networking of these agents.Each agent has a dual nature. If we see their goals or tasks, it seems that the agent knows howto perform those tasks. But as we know, in agents like BUILDER there is no knowledge ofgoal. It merely does a administrative work of activating its subordinate agents. A agent andits connected agents work together as an agency to perform its goals. An Agency is de�ned asany assembly of parts considered in terms of what it can accomplish as a unit, without regardto what each of its parts does by itself. The descriptions of goals of agents given in the exampleabove can than be thought of as description of goals of the agencies those agents are in chargeof. Thus the job of building a tower is done by whole BUILDER agency.There are enormous number of such agents and their agencies. They constitute the Societyof Mind.2.4 LearningA Society is not just a collection of individuals. Its their mutual interaction that fully describes asociety. Similarly in order to understand about society of mind, we have to study the interactionbetween the agents. Until now we have just saw that agents are connected by some links. If weconsider those as non-changing links, it is clear that this model can not account for learning.4

BUILDER Agent

BUILDER Agency

AGENT

AGENT AGENT

AGENT

AGENTAGENT

AGENT

Figure 2: Dual nature of BUILDER
K−line

Current mind state

(shaded agents are the active agents)

K−line formedFigure 3: Formation of Knowledge-linesMost of the knowledge we humans learn is unsupervised. But in most of problem solvingthere is a concept of reward. Even when we are not learning from someone we are still learningfrom reward. For solving problems we must make use of knowledge gathered from previousexperiences. Let us say a particular agent (say A) is solving a problem. For doing so, let usassume it aroused a set of other agents. When the problem is done, the reward makes A toreinforce the connections from A to the set of agents. Next time when A is solving the sameproblem, these set of agents will be more likely to be aroused again by A. This reinforcementwill be treated more formally when we present the Reinforcement Learning model. The rewardis passed down from agent A to those sets of agents and this process continues. This way, asthe intelligence system gains more and more experience the Society of Agents modi�es theirinter-connections and tries to evolve into a more organized and useful society.2.5 Theory of MemoryAnother important property of intelligent systems is memory. They keep track of things theyhave done in the past. We will now see how knowledge is represented, stored, retrieved and usedin this model. This theory introduces a concept of a type of agent called a Knowledge-line orK-line.Whenever we get a good idea, solve a problem, or have a memorable experience, we activate5

PAPER

STRING

MALE OUTSIDE

WIND

YOUNG

RED

K

Figure 4: Disorganized: K-lines attached to many agents

Fly

Jack

Kite
PAPER

STRING

OUTSIDE

YOUNG

RED

WINDMALE

K

Figure 5: Organized: K-lines attached to K-linesa K-line to represent it. A K-line is a wireless structure that attaches itself to whichever mentalstates are active at that time. At some later time, if we suspect that the current problem inhand is too similar to some old problem who's K-line we have already formed - we activate thatK-line. Activation of a K-line automatically activates all the agents that were attached to kind.Thus we get into a mental state that is similar to the state when we solved that problem. Itmakes it relatively easy for the intelligent system to solve the current problem. These K-linesdo not bind to all the agents with equal �rmness. It makes strong connections at a certain leveland weaker connections at higher and lower levels of details. This prevents overwhelming of ourmind because of too many details by avoiding not so useful agents.Suppose a K-line describing a event like Jack
ying a kite is made. As shown in �gurethis K-line will attach itself to the agents active at that instant of mind state.But when this K-line is made, suppose we already have K-lines for individual things likeJack, Kite and
ying. It would be wise if instead of the original attachments this new K-lineattaches itself to already made K-lines as shown in following �gure. As these K-lines are alsoagents, we are not introducing anything new in our model.This new scheme also has the advantage of making the memories and knowledge more hier-archical. 6

2.6 CriticismAs mentioned earlier, this theory assumes that1. the brain is functionally modular2. useful generalizations can be made about the operation of each module and interaction ofsets of modules.While there may be some evidence that assumption 1 is true, there is little evidence that thesecond assumptions are true. There is every possibility that even if the brain is modular, thateach module behaves in an entirely idiosyncratic manner, and every pair of interacting modulesinteract in an entirely idiosyncratic way.3 Subsumption ArchitectureThis approach for building mobile robots was put forward by Rodney A. Brooks in his famouspaper [2]. The subsumption (or 'Brooksian') architecture is predicated on the synergy betweensensation and actuation in lower animals such as insects. Brooks argues that instead of buildingcomplex agents in simple worlds, we should follow the evolutionary path and start building simpleagents in the real, complex and unpredictable world. It was quite successful for controlling simplemobile robots.3.1 MotivationAs mentioned earlier, this architecture was largely inspired from simple biological systems. Ittried to follow the same path as nature has followed in course of evolution. Following were someimportant and essential goals of this theory:� Multiple Goals In any real life situation, often the robot has multiple goals, some of whichare con
icting. Some goals will have higher priorities based on the context. It is importantthat the robot's control system is responsive to high priority goals while still serving thelower level goals. The con
icts should be resolved in such a way that in whole a uni�edbehavior of robot emerges.� Multiple Sensors The robot (as most biological systems) will most likely have multiplesensors. All sensors have an error component in their readings. They will often give incon-sistent readings. The control system must take proper decisions under these conditions.� Robustness Robustness is an essential goal if are making a reliable and dependable robot.The robot must be able to adapt and carry out its goals even of some of the sensors orsystems fail. When the environment changes drastically it should be able to still achievesome modicum of sensible behavior.In addition to these goals, additivity would also be desirable. Once a robot is built, it isdesirable that we should be able to increase its power and capabilities without much changein its internals i.e. We must be able to add new functional units without much alteration ofalready debugged and properly working functional units.7

pe
rc

ep
tio

n

m
od

el
lin

g

pl
an

ni
ng

ta
sk

 e
xe

cu
tio

n

m
ot

or
 c

on
tr

ol

ActuatorsSensors

Figure 6: Traditional decomposition
reason about behavior of objects

plan changes to world

identify objects

monitor changes

build maps

explore

wander

avoid objects

ActuatorsSensors

Figure 7: Brook's decomposition3.2 Traditional decomposition into functional modules Vs. Decompositionbased on task achieving behaviorsFigure 6 captures the essence of traditional decomposition of robot control systems. In this,each functional module takes its input from the right hand side module and passes its outputto the left hand side module. This decomposition does not �t very well with the evidence frombiology and evolution. Achieving many of the goals mentioned above is di�cult in this approachas compared to approach of subsumption architecture. In the traditional approach most of thetime is spend on implementing higher level behaviors, whereas evolution suggests that higherbehaviors such as problem solving behavior, language, expert knowledge and application, andreason are all rather simple once the essence of being and reacting are available [3]. So Brookssuggested task achieving decomposition instead of the traditional approach as given in �gure 7.3.3 Methodological AssumptionsThe philosophy and assumptions of subsumption architecture is given below. Some of theseassumptions arise naturally from the desired goals mentioned in the motivation section.� No central model of the world The approach of making a central representation of the worldis inspired by the Symbol System Hypothesis, [4]. This hypothesis states that intelligence8

operates on system of symbols. The symbols loosely represent the actual objects in theworld. The reasoning system operates in a domain independent way on the symbols. Theperception system delivers the description of the outer world to the central system insymbolic form. Thus, naturally, the world model that is built must depend on kind oftask that the intelligent system is carrying out. For example for a mobile robot whichis just avoiding obstacles, the height of obstacles is irrelevant. But for control system ofan autonomous mobile helicopter, the height of obstacles must form part of central worldmodel. In some robots, it may even be desirable to have two sets of di�erent representationof the same world because of variety of tasks it has to perform. Also symbol systemsin their purest forms assume a non-ambiguous clear picture of the world without noise,which is de�nitely not the case for robots working in the real world. It is only with muchcomputational complexity that problems like ambiguity and noise can be incorporated inthis system. This leads to computationally expensive cumbersome systems.It is because of these shortcomings Brooks in [3] rejects symbol system hypothesis asthe basis of intelligence. The other approach that is suggested is the Physical groundinghypothesis. This hypothesis states that to build a system that is intelligent it is necessaryto have its representations grounded in the physical world. The world is its own bestmodel. Once this key fact is recognized there is no need for central representation ofworld. The modules in the system extract all the information through sensors and giveall its desires and goals as physical actions. Thus in subsumption architecture no centralworld knowledge is maintained.� Distributed Behavior There is no concept of central module in subsumption architecturewhich decides the correct behavior of the system. The whole behavior of the systememerges from uni�cation of the task achieving behaviors of individual modules. Subsump-tion architecture is parallel in the sense all the modules behave independently of each other.This assumption goes in a long way in satisfying the goals of additivity and robustness.� Organization of Agents The Agents are organized in a bottom-up fashion. Each agent isnot aware of agents in the layers above it. Agent at a particular level is not allowed todirectly interfere with the working of agents at lower level. It can modify their behavioronly by altering their inputs and outputs. Thus complex behaviors are fashioned from thecombination of simpler, underlying ones.3.4 Architecture DescriptionAs mentioned in the previous section, the agents or the tasking achieving behaviors are organizedin a bottom up layered fashion. As explained in �gure 7 the problem is decomposed verticallyinto layers of desirable external behaviors of the robot control system.3.4.1 Levels of CompetenceA Level of Competence is an informal speci�cation of a desired class of behaviors of a robot overall environments it will encounter. A higher level of competence implies a more speci�c desiredclass of behaviors. For example, the levels of competence for a mobile robot could be [2]:9

Level 0

Level 1

Level 2

Sensors ActuatorsFigure 8: Layered control system1. Avoid contact with objects (whether objects move or are stationary).2. Wander aimlessly around without hitting things.3. Explore the world by seeing places in the distance which look reachable and heading forthem.4. Build map of the environment and plan routes from one place to another.5. Notice changes in the static environment.6. Reason about the world in terms of identi�able objects and perform tasks related to certainobjects.7. Formulate and execute plans which involve changing the state of world in some desirableway.8. Reason about the behavior of objects in the world and modify plans accordingly.Here each level of competence includes the earlier levels of competence as its subset. Eachlevel of competence further constrains the set of valid behaviors. This is very much motivatedby Biological evolution. The robot with a implementation up-to a particular level of competenceis identical to a organism at a step in the big ladder of evolution.3.4.2 Layers of ControlsFor each level of competence we build a layer of control. Higher level of competence is achievedby adding a new layer to the already added layers. As shown in �gure 8 each layer of control isallowed to examine the data from level 0 system and also allowed to inject data into the internalinterfaces of level 0 suppressing the normal data
ow. A lower layer continues to run unawareof the higher layer which may sometimes interfere in its data paths. A major advantage ofthis is that the system can be partitioned at any level, and the layers below form a completeoperational system. Thus this provides a way to incrementally build and test a complex mobile10

Inputs Outputs

Inhibitor

Module

Suppressor

Figure 9: Suppression and Inhibitionrobot control system.Each layer is made of set of small processors which send messages to each other over connect-ing wires. Each processor is a augmented �nite state machine (AFSM) with a set of registers forholding data and retriggerable monostables. These processors run completely asynchronously,monitoring their input wires and sending messages to output wires. A new message overwritesany existing message on that wire. Thus it is possible for messages to get lost. The arrival of amessage, or the expiration of a timer, can trigger a change of state in the �nite state machines.Finite state machines states can either wait on some event, conditionally dispatch to one of twoother states based on some combinational predicate on registers, or compute a combinationalfunction of the registers directing the result either back to one of the registers or to an output ofthe augmented �nite state machine. All clocks of the subsumption system have same tick periodwhich is known as the Characteristic frequency of the particular subsumption implementation.These clocks need not be synchronized.3.4.3 Communication between layersThe AFSM's have some input lines and some output lines. An output line from a module isconnected to input lines of one or more modules. These are the only ways in which AFSM'scan communicate with each other. In addition to these, there are three other concepts ofcommunication - Inhibition, suppression and defaulting.As shown in �gure 9 a output can be inhibited. An extra wire can tap into the output of aAFSM. If a signal arrives from this wire it inhibits the output of the AFSM for some small timeperiod. This time period is usually equal to two clock ticks of the internal clocks. The originalmessage sent to this wire during this time period is lost.Similarly, we can tap into the input of a AFSM. This is called suppression. Its behavioris similar to inhibition. The signal from the tapping wire is fed into the module for a smalltime period. Defaulting is like suppression, except that the original wire, rather than the newside-tapping wire, is able to take control of the messages sent to the destination [13]. In allthese cases, a continuous supply of suppressing messages is required to maintain control of11

the side-tapped wires. It is by these mechanisms that a con
ict between di�erent behaviors isresolved.[5] describes the Behavioral Language, a rule-based real-time parallel robot programminglanguage which compiles into the subsumption architecture just described.3.5 Extensions to Subsumption ArchitectureThe subsumption architecture model described here is essentially re
exive. It gives a rapidand re
exive response to its environment. But due to only re
exive response, subsumptionarchitecture is not totally salient and adequate. To overcome these limitations, some extensionsto the original subsumption architecture has been proposed.3.5.1 Hormonal ActivationAs we have seen, Subsumption Architectural agents may be considered partially salient. Thereare con
icts between di�erent kinds of behaviors. At a given time, many behaviors would becompeting for actuator resources. It is essential that con
ict should be resolved in favor ofbehavior which is appropriate at that moment.To resolve this problem, Brooks in [6] proposed hormonal activation as an extension to thesubsumption architecture. This model is inspired by model of biological hormone system givenby [7]. Hormones in biological system are kind of low bandwidth global communication scheme.But they are not controlled by any centralized agent. Their release and activation of behaviorsby them happens purely locally. This �ts with the overall idea of subsumption architecture.In this model any sensory input do not directly release hormones. Instead a two stagemechanism is used for hormonal activation of behaviors.Conditions Any computational process can excite a condition. Examples of conditions ispanic or drowsiness. Many processes can excite same condition. In this case their excitation isadded. Conditions have a value between 0 to 15. Any process can excite a condition by givingany increment to its current value. The conditions decays according to the function (linear,bilinear) provided by the programmer. These conditions do not directly a�ect any behaviors.This is done by another set of Releasers.Releasers Releasers are the one which directly e�ect the behaviors. They are more closelyrelated to hormones. A releaser's value at any instant is a function of activation values of a setof conditions.A�ect of Releasers on behavior A behavior is a collection of Augmented Finite Statemachine. A AFSM is a computational process. Each behavior has associated with it a Activationlevel. A behavior becomes active when the activation level crosses some threshold. The activationlevel of the behavior is further function of one or more releasers. As mentioned above a behaviorcan have two states - active or inactive. Based on the state of behavior the processes withinthem are allowed to run. Processes are further divided into three classes:1. Regular Processes: These processes always run, and any message they send out reach theirdestinations.2. Haltable processes: These processes only run when the behavior is active. Otherwise theydo not run, do not process their inputs and do not send out any messages.12

3. Inhibitable processes: These processes always run but when the behavior is inactive theiroutputs are inhibited or blocked. They still receive all their inputs however and can retainand change internal state.In this way, a global integration of behaviors is done without any use of a global centralizedagent. Activation priorities of two con
icting behaviors can be decided by such kind of hormonalstates. In many cases, the higher level behaviors may want to turn o� the lower level survivalbehaviors because they have access to more sophisticated information. Without any need forexplicit knowledge, the system will have knowledge of global state. It will know what it is tryingto do and a global uni�ed and consistent behavior will emerge.
3.5.2 Planning and LearningIn the original subsumption architecture there is no provision for planning and learning. Therobot built using this architecture would be totally re
exive. In many real life situations, it isdesirable and often essential that the robot learns from the world and when trying to achieve itsgoal(s), it should plan properly to maximize output and minimize usage of essential resources.The learning part can be achieved by keeping some selective higher level agents which are notre
exive and which maintain a global learning database. But this goes against the whole ideaof not having any centralized agent and any centralized world model.To resolve this problem, [8] proposed a model of planning and learning which is totallyreactive and built bottom up. This model is totally compatible with the original philosophyof the Subsumption architecture. In this model, the representation of the entire system ishomogeneous. It consists of simple reactive rules which encode both the control strategy andthe knowledge of the system. The processes itself encapsulates the knowledge of the roboticsystem.This model is explained further with help of example of a mobile robot which builds map oflandmarks it encounters (learning) and then plans its way to a speci�ed goal (planning).As �gure 10 illustrates, in the lower layer has the basic behavior of the system - navigation.The boundary following behavior of the system adds navigational re
exes to the system whichkeeps the agent close to potential landmarks. landmark detector then utilizes the boundaryfollowing behavior of the navigational system to detect potential landmarks in the system.The landmark detector consists of set of monitors which keep track of relevant features of theenvironment and increase or decrease landmark detected con�dence level. When this con�dencelevel increase beyond a speci�ed threshold a landmark is detected and sent to the map module.In the map module, Learning constructs and constantly updates the topological map of theenvironment. The map is a topological network of processes, each of which corresponds to alandmark in the world. Whenever a landmark is detected by the landmark detection module, itis broadcast to all processes in the map. If none of the processes recognizes it, the landmark isadded to the map as new. The topology of the map is maintained isomorphic to the environment.A landmark is described by its type, provided by the landmark detector, compass heading andits topological position. On �nding a new landmark, a process is associated to it and it is linkedto its neighboring physical landmarks via communication links. If a landmark is recognized by13

SAFE WANDERING

BOUNDARY FOLLOWING

PLANNING

LEARNING

LANDMARK DETECTION

goals
(user)

compass
(world)

sonar
(world)

turn
suggestions

stop, go

turn

turn

actuators

MAP

NAVIGATIONFigure 10: Map building and planning agent: capabilities and information
owa process, it gives us the position of robot in the map.Planning is also implicitly done by the system through the map module. Whenever the userselects a goal location, the process associated with the landmark of the goal becomes activated.Each process in turn spreads its activation to its neighbors. The activation decays down asfunction of physical distance. Thus to plan the shortest path to the goal, the agent has to justsee the activation values of the nearest landmarks. This turn suggestions are then given to theactuators by the map module by inhibiting the output of the navigation module.Thus the whole topological map of the environment is implicitly built into the system withoutany need of central world model. This model was again inspired by biological systems. Thismodel is a plausible interpretation of known physiological data of rat navigation [9].3.6 Criticism of Subsumption architecture1. Subsumption architecture is not su�ciently modular. Upper layers interface with internalfunctions of lower layers. To design the upper layers we cannot treat the lower layers asblack-boxes. As the complexity and size of the system will increase it will become moreand more di�cult to code the higher layers of controls. The entire framework requiresbuilding feedback loops by hand, with no theory of how to construct them.2. Subsumption architecture was inspired by lower biological systems such as insects. Theabilities and intelligence of humans is de�nately much more superior than insects. But itis highly unlikely that the same architecture can explain human intelligence also.3. It is not clear that how human abilities like Language can be explained without maintaining14

any central model of world.4 Reinforcement learning4.1 Introduction and MotivationWhen a child comes to the world, his intelligence agency does not know which behaviors toperform. Initially, his actions are random and which each action he often gets some reward orpunishment (negative reward). As he gains more and more knowledge about which actions givesrewards and which actions give punishment, he modi�es his behavior to get more reward. Thisprocess, which starts at childhood, continues throughout the life of an individual.In many real life situations, this is exactly the position a robot �nds itself in. The programmercannot imagine all the situations the robot will face, and decide the optimal action for the robot.In applications like unmanned planetary exploration, it is quite likely that robot �nds itself ina situation in which it does not know the optimal action to take. The robot will be aware of itsgoal but not about the action that will take it to its goal. We would ideally like that the robot,like humans, explores di�erent actions and based on its experience, tries to �nd the optimalaction.One such approach of learning by interaction with the environment is reinforcement learning.In reinforcement learning problem, there is a learner that is connected to its environment throughsensors and actuators. The learner knows what to do - It has to maximize the rewards given toit by the environment. But it does not know which actions will maximize the reward. It maystart by trying a random action and noting the reward that it gave. After many such trials,he will know which actions give more rewards. It has to direct its future actions based on thisinformation so as to maximize the total reward it receives from the environment in the long run.From above discussion it is clear that the agent must have two properties of exploration andexploitation for learning. At a given time, to obtain more reward, the agent must prefer actionsthat in the past have given him more rewards. The agent has to exploit the information it hasalready have to increase the reward, but to get this information it is essential that it explores theactions it has not selected before and �nds out the rewards they give. It is clear the if the agentsbehavior is biased too much toward one of these properties, there will not be any learning. Soa appropriate trade-o� between these two behaviors must be decided.4.2 A formal speci�cation of the Reinforcement Learning problem4.2.1 Agent and its EnvironmentThe whole concept of reinforcement learning is based on interaction between a learner and itssurroundings. The learner is known as the Agent. Everything surrounding it which is not in itsdirect control is called its Environment. The Agent can only sense the Environment throughits sensors. It cannot arbitrarily change the environment. It can only specify some actions tobe taken in response to a particular state of environment. For example, in mobile robots actioncould be the direction and velocity in which to move. The environment also gives rise to rewardand the agent's goal is to maximize it over long run.The �gure 11 shows this relationship between the agent and its environment. The Agentand the Environment interact at time steps, t = 0; 1; 2; 3:::. At each time step t, the agent getsa representation of the environment's state st 2 S, where S is the set of possible states. In the15

s t+1

r t+1

s t r t
a t

Environment

Agent

ActionRewardState

Figure 11: Agent-Environment interactionrobotics example, st can be the collection of sensors readings or some processed value of thosereadings which provides us with the complete description of the current state. The Agent, inresponse to state st, selects a actionat 2 A(st), A(st) is set of available actions in the state st.This action of the agent will change the environment's state from st to st+1 one time step later.Also, in addition, the agent receives a numerical reward from the environment, rt+1 2 <.In many cases, rewards are also computed inside agents, but as shown in the �gure they areconsidered external to the agent as the part of environment. This is because the rewards are notin direct control of the agent and we consider anything that is not in direct absolute control ofthe agent as its environment. Also the representation of the environment's state st and agentsaction at will vary from problem to problem.4.2.2 Relationship between Goals and RewardsAs we have mentioned earlier, in reinforcement learning the goal of the agent is maximize thetotal reward it gets. The agent should make its decisions such that the reward in long run ismaximized not just the immediate reward.The agent is not directly aware of the goal the programmer wants it to achieve. It's goal isonly related to maximizing its reward. Thus it is the duty of programmer to choose the rewardcarefully and cleverly so that in maximizing its reward the agent achieves its goal. For example,in case of a robot learning to move without bumping into nearby objects, the reward can be 1if it does not bump into anything. Whereas the reward should be �1 in case it bumps into anyobject. For a robot trying to escape from a given maze as soon as possible, the reward can be�1 until it escapes from the maze and on escaping it can be given a reward of +1.In all these examples, the agent will eventually learn to maximize the reward. Doing thiswill require agent to formulate its behavior which allows it achieve the goal the programmerwishes it to achieve. The reward is the programmer's way of communicating to the agent whathe wants to achieve. The reward should never be used to give information such as how theprogrammer wishes to achieve its reward. This is a common mistake. For example, many timeswe know some good heuristics to solve a problem. If reward is given so that agent proceedsaccording to these heuristics, it is quite possible the agent may learn to maximize its rewardwithout even actually achieving the �nal goal. So its important that programmer only givesinformation about what is to be done, not how it is to be done. If the reward is properly de�ned16

for the goal, in the long run, the agent will actually discover the heuristics.4.2.3 ReturnsAs we have mentioned the agents goal is to maximize the reward in long run. But we have notspeci�ed its precise meaning. If the agent is at time step t, there is a sequence of rewards rt+1,rt+2, rt+3, . . . after this state. We have not speci�ed what aspect of this sequence the agentwants to maximize.We want the agent to take into account the future also while making current decisions. Thisis done through the concept of expected return. The return, Rt, is de�ned as some speci�c func-tion of the reward sequence. In the simplest case, we can de�ne Rt asRt = rt+1 + rt+2 + rt+3 + : : :+ rTHere T is the �nal step. The concept of �nal state makes sense in situations which the wholeagent-environment interaction can be broken into episodes. After each episode, there is a resetto a initial state. An examples of such interaction is agent playing game such as chess or a robottrying to escape from a maze. These kind of tasks are called episodic tasks.It is not always possible to break the interaction into identi�able episodes. This is the casefor a robot, which is continuously exploring planetary surface or enemies territory. There is noend state in these kinds of task. These kinds of tasks are called continual tasks. The notationfor episodic and continual tasks can be uni�ed by considering a special terminal state in theepisodic tasks which loops to itself and from that state on-wards the rewards are 0. Thus itwould not make a di�erence if we sum over �rst T steps or over the full in�nite sequence.The model of return given above is obviously not suitable for continual tasks because asT =1, the return could become in�nity. For this additional concept of discounting is used. Inthis approach the more distant is a reward from current state, the more heavily is it discounted.The discounted return function is de�ned asRt = 1Xk=0
krt+k+1where
 is called the discount rate, 0 <
 < 1.Thus a reward received after k steps seems only
k=1 times its worth if it was receivedimmediately.
 give us the degree of far-sightedness of the agent. As
 increases the agentbecomes more and more far-sighted.Another approach is the average-reward model, in which the agent is supposed to optimizethe reward function Rt = limh!1 1h hXk=0 rt+k+1In this model, it is impossible to distinguish between the cases when the reward comes in earlyphases and the case when it comes later. It is possible to generalize this model so that it takesinto account both the long run average and the amount of initial reward than can be gained. Inthe generalized, bias optimal model, a policy is preferred if it maximizes the long-run averageand ties are broken by the initial extra reward.17

4.2.4 Markov Decision ProcessesAn environment satis�es the Markov property if its state compactly summarizes the past withoutdegrading the ability to predict the future. This is rarely exactly true, but often nearly so; thestate signal should be chosen or constructed so that the Markov property approximately holds.If the Markov property does hold, then the environment is called a Markov decision process(MDP). A �nite MDP is an MDP with �nite state and action sets.We can de�ne a particular MDP completely by its state and action sets and by the one-stepdynamics of the environment. Given a state s and an action a, the probability of next state s0is P ass0 = Pr(st+1 = s0jst = s; at = a)Also, the expected value of reward, given a state s, action a and next state s0 the expected valueof reward is Rass0 = E(rt+1jst = s; at = a; st+1 = s0)We can see that these two quantities completely speci�cy all the important acpects of thedynamics of a �nite MDP we are interested in.4.2.5 Value FunctionsWe de�ne policy � as a mapping from states, s 2 S , and actions, a 2 A(s) , to the probabilityof taking action a when in state s. Value function V �(s) (the value of a state s under a policy�) is the expected return when starting in state s and following the policy � thereafter. ForMDPs and discounted return function, V �(s) can be de�ned more formally as:V �(s) = E�fRtjst = sg= E�f 1Xk=0
krt+ k + 1jst = sgwhere E� denotes the expected value given that the agent follows policy � and t is any timestep. The function V� is known as the state-value function for policy �.Similarly, the action-value function for policy �, Q�, which is the expected return startingfrom s, taking the action a, and thereafter following policy �, is de�ned as:Q�(s; a) = E�fRtjst = s; at = ag= E�f 1Xk=0
krt+k+1jst = s; at = agThe value functions de�ned above can be easily estimated through experience. If the agentkeeps track of the actual returns following a state for each state, and maintains a average thenit will be a good approximation of , V�(s). It can be seen that as the number of times a stateis reached approaches in�nity this average converges to the state value V�(s). Similarly if wemaintain separate averages for each action taken in a state, we can get estimation of Q�(s).For any policy � and any state s, the following consistency condition holds between the valueof s and the value of its possible successor states:V �(s) = E�fRtjst = sg 18

= E�f 1Xk=0
krt+k+1jst = sg= E�frt+1 +
 1Xk=0
krt+k+2jst = sg= Xa �(s; a)Xs0 P ass0 [Rass0 +
E� 1Xk=0
krt+k+2jst = s]= Xa �(s; a)Xs0 P ass0 [Rass0 +
V �(s0)]where a 2 A(s) and s 2 S.This equation is called Bellman equation for V �. The value function V � is the unique solutionto its Bellman equation. This equation forms basis of number of ways to compute, approximate,and learn V �.4.2.6 Optimal Value FunctionsSolving a Reinforcement learning problem is equivalent to �nding a policy that achieves a lot ofreward over long run. But given a correct model, how to �nd that optimal policy? A policy �1is called better than another policy �2 if and only ifV �1(s) � V �2(s)8s 2 SThere is always at least one policy that is better than or equal to all other policies. Such apolicy is called optimal policy and set of all optimal policies is denoted by ��. The optimumvalue function and optimum action-value function for �� is de�ned as:V �(s) = max� V �(s)8s 2 SQ�(s; a) = max� Q�(s; a)8s 2 S; a 2 A(s)We can now derive the Bellman optimality equations for V � and Q� whose solutions willenable us to �nd V � and Q� for a �nite MDP, given its model.V �(s) = maxa2A(s)Q��(s; a)= maxa2A(s)E��fRtjst = s; at = ag= maxa2A(s)E��frt+1 +
 1Xk=0
krt+k+2jst = s; at = ag= maxa2A(s)Efrt+1 +
V �(st+1)jst = s; at = ag= maxa2A(s)Xs0 P ass0 [Rass0 +
V �(s0)]
19

Q�(s; a) =Xs0 P ass0 [Rass0 +
maxa0 Q�(s0; a0)]4.2.7 Finding PolicyFor �nite MDPs, the Bellman optimality equation has a unique solution independent of thepolicy. The Bellman optimality equation is actually a system of equations, one for each state,so if there are N states, then there are N equations in N unknowns. If the dynamics of theenvironment are known, then in principle one can solve this system of equations for V � usingany one of a variety of methods for solving systems of nonlinear equations. One can solve arelated set of equations for Q�.Given V � it is easy to �nd the optimal policy ��. For each state s, we will have some actionsfor which the maximum is obtained in Bellman optimality equation. Any policy assigning non-zero probability to these actions is an optimal policy. If we have Q�, then for a given state theagent can directly choose the action that maximizes Q�(s; a).Thus reinforcement learning problem can be solved by solving bellman optimality equations.This approach is rarely used in practice. The major reason of this is the huge need for compu-tational and memory requirements. Because of this problem, we have to rely on approximatesolutions. There are many methods in reinforcement learning that can be clearly understood asapproximately solving bellman's equation. Examples of such methods are Dynamic program-ming, monte carlo and temporal di�erence learning methods [10].5 Conclusion and future workThough Subsumption architecture has worked well for simple re
exive robots, it is not clearthat whether the same architecture, without any modi�cations, can be applied for solving morecomplex and big problems. Systems programmed by Subsumption architecture are purely re-
exive, which makes them fast. Extensions to this architecture have added some representationwithout losing the robustness and reactivity of pure subsumptive architectures.Currently the behavior generating modules and the interaction between these modules ishand-coded and hard-wired. If this process is automated or semi-automated, we can easilybuild larger, complex and more competent systems.There are a variety of reinforcement-learning techniques that work e�ectively on a varietyof small problems. But very few of these techniques scale well to larger problems. It is verydi�cult to solve arbitrary problems in the general case.One of the problems with reinforcement-learning is that the agents have a hard time even�nding the interesting parts of the space. They wander around at random never getting near thegoal, or they are always killed immediately. One way to overcome this problem is by programminga set of re
exes that cause the agent to act initially in some way that is reasonable. These re
exescan eventually be overridden by more detailed and accurate learned knowledge, but they at leastkeep the agent alive and pointed in the right direction while it is trying to learn.From the discussion above it appears that the two theories are in a way, supplementary. itwould be interesting to see if the drawbacks for both these theories can be removed by somehowcombining them. Some work has been already started in this direction [11].20

AcknowledgementsI would like to express my heartfelt gratitude towards Dr. Pushpak Bhattacharyya for hisconstant guidance and encouragement without which this seminar report would have been anexercise in futility.References[1] Marvin Minsky, The Society of Mind. Simon and Schuster, New York, 1985.[2] Rodney A. Brooks, A Robust Layered Control System for a Mobile Robot. IEEE Journalof Robotics and Automation, RA-2, April 1986, 14-23.[3] Rodney A. Brooks, E lephants Don't Play Chess. in P. Maes, ed., Designing AutonomousAgents, MIT Press, 1990, 3-15.[4] Herbert A. Simon, The Sciences of the Arti�cial. MIT Press, 1969.[5] Rodney A. Brooks, The Behavior Language: User's Guide. MIT AI Memo 1227, April 1990.[6] Rodney A. Brooks, Integrated systems based on behaviors. SIGART Bulletin, Vol. 2, 1991,46-50.[7] Edvard A. Krawitz, H ormonal Control of Behavior: Amines and the Biasing of BehavioralOutput in Lobsters. Science 241, September 30, 1988, 1775-1781.[8] Maja J Mataric, Behavioral synergy without explicit integration. SIGART Bulletin 2, 2(4),1991, 130-133.[9] Maja J Mataric, N avigating with a Rat Brain: A Neurobiologically-Inspired Model forRobot Spatial Representation. From Animals to Animals: First Intenational Conference onSimulation of Adaptive Behavior Proceedings, J. Meyer and S. Wilson, eds., MIT Press,1990, 169-175.[10] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning. An Introduction. Cam-bridge, MA: MIT Press, 1998.[11] Sridhar Mahadevan and Jonathan Connell, Automatic Programming of Behavior-basedRobots using Reinforcement Learning. Arti�cial Intelligence , vol. 55, Nos. 2-3, June 1992,311-365.[12] Rodney A. Brooks, Challenges for Complete Creature Architectures, in: Meyer, J.-A./Wilson, R. (Eds), Simulation of Adaptive Behavior. MIT Press, Cambridge MA, 1991,434-443[13] Rodney A. Brooks, A Robot that Walks: Emergent Behavior from a Carefully EvolvedNetwork. Neural Computation, 1:2, Summer 1989, 253-262.
21

