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Abstract. Applications requiring the handling of uncertain data have led to the
development of database management systems extending the scope of relational
databases to include uncertain (probabilistic) data as a native data type. New au-
tomatic query optimizations having the ability to estimate the cost of execution of
a given query plan, as available in existing databases, need to be developed. For
probabilistic data this involves providing selectivity estimations that can handle
multiple values for each attribute and also new query types with threshold values.
This paper presents novel selectivity estimation functions for uncertain data and
shows how these functions can be integrated into PostgreSQL to achieve query
optimization for probabilistic queries over uncertain data. The proposed methods
are able to handle both attribute- and tuple-uncertainty. Our experimental results
show that our algorithms are efficient and give good selectivity estimates with
low space-time overhead.

1 Introduction

Recently there has been a surge in interest in managing probabilistic data in relational
databases [1,2,3,4,5,6]. This interest is engendered by the needs of numerous appli-
cations including scientific data management, data integration, sensor databases, data
cleaning, text processing and location-based services. The relational database model
has very little support for uncertain data, limited to the use of NULL values. The nature
of uncertainty in many applications is such that it is necessary to store alternative values
for tuples, or attributes and process probabilistic queries over this data.

Several models have been proposed for extending the scope of relational databases
to include uncertain (probabilistic) data as a native data type. These models define new
semantics for query processing over uncertain data. The results of these queries are
typically probabilistic in nature. Since results with a low probability of occurrence are
generally less interesting than higher probability answers, an important new class of
threshold queries has been identified [7]. These queries return only those answers that
have a probability exceeding a threshold. While this thresholding weeds out less rel-
evant answers, it also opens up possibilities for query optimization. There has been
some recent work on efficient processing of threshold queries over uncertain data [8].
This work has largely focused on indexing methods to improve query performance.
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The long-term goal for several projects is the development of novel database man-
agement systems that natively handle uncertain data. An important step in this direction
is the development of automatic query optimization as is available in existing databases.
Toward this end, an essential ingredient is the ability to estimate the cost of execution
of a given query plan. For probabilistic data this would involve providing selectivity
estimates for probabilistic operators. Currently, there is no work on providing such se-
lectivity estimation functions for probabilistic data. With the availability of these esti-
mation functions it is possible to use existing query optimization techniques that are
already built into databases to handle the case of probabilistic data.

In this paper we address this problem and develop novel selectivity estimation func-
tions for uncertain data. We also show how these functions can be integrated into Post-
greSQL to achieve query optimization for probabilistic queries over uncertain data.
Selectivity estimation for uncertain data needs to handle multiple values for each at-
tribute and also novel query types with threshold values. Furthermore, an important
type of uncertainty transforms a single attribute value to a continuous distribution – this
is especially common in sensor databases [9]. The existing cost estimation methods are
therefore not applicable for this domain.

The goal of this paper is to handle selectivity estimation for the two main types
of uncertainty that have been proposed in recent work: tuple uncertainty [1,2] and at-
tribute uncertainty [7]. To demonstrate the effectiveness of our selectivity estimation
techniques, we have used an open-source database management system for uncertain
data called Orion [3] which is built into PostgreSQL.

The major contributions of this paper are as follows:

– We have developed efficient algorithms for selectivity estimation of probabilistic
threshold queries over uncertain data.

– We have implemented these algorithms in a real database system.
– Our experimental results show that the algorithms are efficient and provide good

estimates for query selectivities.

The rest of this paper is organized as follows. Section 2 summarizes the related work
done in this area. We formally describe the uncertainty model and probabilistic queries
in Section 3. Our algorithms for selectivity estimation are presented in Section 4. We
present the experimental results in Section 5, and Section 6 concludes this paper.

2 Related Work

There is a rich body of work on selectivity estimation for traditional relational database
management systems. Most approaches for selectivity estimation on precise data use
histograms. Poosala et al [10] proposed a taxonomy to capture all previously proposed
histogram approaches. These approaches are not applicable for uncertain data because
both the queries and the underlying data types for uncertain data differ greatly from
traditional data and queries.

More recently, there has been a great deal of work on the development of models
for representing uncertainty in databases. Two main approaches for modeling uncertain
data have emerged in this field: Tuple uncertainty [1,2] and Attribute uncertainty [7].
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Similar models have been proposed in moving-object environments [11] and in sensor
networks [9]. Several systems that handle such uncertainty in data have been recently
proposed (Orion [3], MayBMS [12], Mystiq [13], Trio [14], [4]). This probabilistic
modeling of data has also been extended to semi-structured data [15] and XML [16].

Efficient evaluation of probabilistic range queries is discussed in [2,6,7,9,11]. Prob-
abilistic nearest-neighbor queries are presented in [7,17]. An index called Probabilistic
Threshold Index was proposed in [18] that can be used to efficiently execute some
classes of probabilistic queries.

To best of our knowledge, the issue of selectivity estimation for queries over proba-
bilistic data has not been addressed before.

3 Uncertainty Model

To model the uncertainty present in a data item, a data scheme known as the Attribute
uncertainty model was proposed in [7]. This scheme assumes that individual attributes,
as opposed to complete tuples, are uncertain. The attribute uncertainty model assumes
that each data item can be represented by a range of possible values along with the
distribution of values over this range. Formally, assume that each tuple of interest con-
sists of an uncertain attribute a. If there are more than one uncertain attributes within
the same tuple, they are assumed to be independent of each other. The domain of the
uncertain attribute can be continuous (e.g. real-valued) or discrete (e.g. integer). The
probabilistic uncertainty of a continuous attribute a consists of two components:

1. Uncertainty Interval: The uncertainty interval of an item a, denoted by Ua, is an
interval [la, ra] where la, ra ∈ �, ra ≥ la and a ∈ Ua. The range of Ra of a is
defined as Ra = ra − la.

2. Uncertainty pdf: The uncertainty pdf of a, denoted by fa(x) is a probability dis-
tribution function (pdf) of a where fa(x) = 0 if x /∈ Ua.

In addition to the pdf fa(x), we can also define a cumulative distribution function
(cdf) Fa(x), which is defined as Fa(x) =

∫ x

−∞ fa(x)dx. Note that, similar to the con-
tinuous case, we can also define the pdf and cdf functions in case of a discrete attribute
by replacing the integral with a sum in the above definitions.

The tuple uncertainty model [1,2,19] assumes that the complete tuple is uncertain. A
probability value is attached to each tuple which represents the probability of that tuple
being present in the database. In addition, multiple tuples can be grouped together to
form an x-tuple [1]. The tuples present inside a x-tuple are called alternatives and they
represent mutually exclusive values for the tuple.

The goal of this paper is to propose estimation solutions that are applicable to both
models of uncertainty: attribute and tuple. For our purposes, we are interested in a single
attribute at a time, a (real-valued or integer), for which we are estimating the selectivity.
Thus, we can ignore the intra-tuple dependencies. We assume that the uncertainty in the
data can be captured in terms of attribute uncertainty. In other words, for the attribute in
question, we are able to generate a pdf (fa) and cdf (Fa) for each tuple of the relation.
This is directly available from the attribute uncertainty model. For the case of tuple
uncertainty, there are two cases to consider. The first is if there are no x-tuples. In
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this case, each tuple has a probability value associated with it and is independent of any
other tuple. For this case, the pdf for each tuple is simply the single attribute value along
with the associated tuple probability. In the second case, the x-tuple itself provides
multiple alternatives for the given attribute along with associated probabilities. These
are collapsed into a single attribute uncertainty (discrete) pdf.

3.1 Operators and Threshold Queries

A number of operators are defined in [8] for comparing uncertain values with both un-
certain and certain (precise) values. This paper focuses on selection queries that com-
pare an uncertain value with precise values. For these queries, we present the definitions
for comparing uncertain with certain data. Operators between an uncertain value a and
a certain value v ∈ � can be defined as:

Pr(a < v) =
∫ v

−∞
fa(x)dx = Fa(v)

Pr(a > v) = 1 − Fa(v)

The set of queries that we consider in the paper are called Probabilistic Threshold
Range Queries and were proposed in [18]. These queries are a variant of probabilistic
queries where only answers with probability values over a certain threshold τ are re-
turned. With this concept, all the operators discussed above can be changed into boolean
predicates by adding a probability threshold to them.

4 Selectivity Estimation

In this section we describe various techniques that can be used for estimating the selec-
tivity for a given probabilistic threshold operator.

4.1 Unbounded Range Queries

This approach is based on mapping the uncertain attribute values to a 2-D histogram
and estimating the query result size by executing a 2-D box query on the histogram.

To understand the approach, let us consider an unbounded range query Q given by
a <τ x0, where τ is the probability threshold for the > predicate. This query returns
all uncertain items a such that Pr(a < x0) > τ . In terms of the cumulative distribution
function Fa(x), we get the following condition:

Pr(a < x0) > τ ⇔
∫ x0

−∞
fa(x)dx > τ ⇔ Fa(x0) > τ (1)

This follows from the definition of pdf and cdf functions.
Let us consider a 2D graph where we plot the cdf function F of all uncertain items.

Figure 1 shows an example of this graph. The cdfs for three data items a, b, and c are
shown. The range query Q given by Equation 1 can be translated into a (unbounded)
box query x < x0 and y > τ over this 2D plot (the shaded region in Figure 1). Items a
and b satisfy the query as they intersect the shaded region.
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Fig. 1. Example plot for query Q(x0, τ )

Theorem 1. All the items whose cdf function Fa(x) lies in the box defined by query Q
are part of the result of query Q. That is, ∀a, where the cdf function Fa lies in the box
defined by query Q, we have Pr(a < x0) > τ .

Proof. We observe that for any cdf Fa that lies in the box of query Q, we have Fa(x) >
τ for some x < x0. As Fa is a monotonically increasing function, we can deduce that
Fa(x0) > Fa(x) > τ . Using 1, P (a < x0) > τ .

Now we state the following theorem without proof:

Theorem 2. The total number of cdf lines that lie in the query box Q is equal to the
number of lines crossing (intersecting) the vertical line-segment given by � : x =
x0, τ < y ≤ 1, which furthermore is equal to the number of lines crossing (inter-
secting) the horizontal ray y = τ, x < x0.

The proof of this theorem follows from basic geometry and the monotonically increas-
ing nature of cdf F .

Now finding all the items whose cdf function lies in the box defined by a query Q is
equivalent to finding the total number of intersections of cdf lines with the vertical line-
segment �. To efficiently calculate this number we need to develop an approximation of
the above technique. For this purpose, we define a 2-D grid of histogram over the plot
region. Given ui, 0 ≤ i < m as all the uncertain data items, we define

l = min
i

(lui) , r = max
i

(rui)

where [lui , rui ] is the uncertainty interval of ui. The plot region is bounded by 0 and 1
in the y (probability) direction and l, r in the x direction. The range R of the histogram
is defined as R = r − l. The width of the histogram is given by the parameters δx and
δp which represent the size of histogram along x and y (probability) axes respectively.
A histogram bucket H(x, y) covers the area given by the box (x, y, x+ δx, y+ δp). The
notations used are summarized in Table 1.
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Table 1. Notations

Symbol Meaning

fa Probability distribution function (pdf) of uncertain item a
Fa Cumulative distribution function (cdf) of a

la, ra Left and right bounds of a’s interval.
Ra Range of a, Ra = ra − la
ui All the uncertain data items (0 ≤ i ≤ m)
l, r Leftmost and rightmost limits of all the uncertain intervals
R Range of input data, R = r − l

δx, δp Width of histogram bucket along x and y (probability) axis
H Histogram structure for cost estimation

Definition 1. The height of a histogram bucket H(x, y) is the total number of cdf lines
of uncertain items intersecting the box (x, y, x + δx, y + δp).

With this definition, we can now informally define the algorithm for calculating an
approximation (upper-bound) of operator selectivity. Using Theorem 2 we see that the
sum of individual histograms that cover the vertical line-segment � gives a good approx-
imation of the upper-bound of the result set size. The error in this approximation can
be reduced by reducing the size of the histogram buckets. This extra accuracy comes at
the cost of increased space overhead for storing the histogram structure.

If a cdf line has a large slope, it can contribute to more than one histogram in a given
vertical window. This will result in over-estimation of the result size because the same
cdf line will be counted multiple times. To prevent this, we propose a simple fix: If a
cdf line intersects multiple (contiguous) histograms in a given vertical window, we only
count its contribution in the topmost histogram. With this slight change, we will avoid
counting the same line multiple times and obtain a tighter upper bound. Note that by
adding the contribution of a given cdf line to the topmost histogram, we are guaranteed
that there will be no false negatives. The algorithm for constructing this 2-D histogram
is presented in Figure 2.

The algorithm presented in Figure 2 takes as input the uncertain data items from an
attribute and the parameters δx and δp defining the width of each histogram inside the
structure H . In addition to these values, it also takes the l and r values (defined earlier)
which represent the spread of input data values. Depending on the attribute domain,
these parameters can be provided by the user or the system can select them by random
sampling. For a given uncertain item a, we start counting its contribution from its lower
bound la and stop when we hit the upper-most bucket in the y-direction (Step 1(ii)).
This small optimization saves a lot of computations as this step is repeated for all the
input uncertain data items. Note that, for the correctness of our algorithm we do need
to add the contributions to all the successive top buckets for item a. We take care of this
correction in step 2 with just one pass over the entire histogram.

Given this histogram structure H , we can easily give an approximation for query
result size. Figure 3 shows the algorithm for finding the selectivity estimate for query
Q(x, τ) = a <τ x.



Query Selectivity Estimation for Uncertain Data 67

Input
ui, 0 ≤ i < m : All the uncertain data items
δx, δp : Width of histogram along x and y axis
l, r : The left and right bounds for the histogram

Output
H : The histogram structure for the input data

0. Initialize H with all bucket heights = 0
1. for a = u0, u1 . . . , um−1 do

(i) let x = �(la − l)/δx�; p = 0
(ii) while p < (1 − δp)

(a) p = Fa(l + (x + 1)δx)
(b) H (x, �p/δp�)++
(c) x++

2. for x = 0, 1, . . . , �R/δx�
(i) H(x, �1/δp�) += H(x − 1, �1/δp�)

3. return H

Fig. 2. Algorithm for generating the histogram for unbounded range queries

Input
x0, τ : Parameters of a query Q
H : Histogram structure
m : Total number of uncertain items
δx, δp : Width of histogram along x and y axis
l, r : The left and right bounds for the histogram

Output
An estimate (upper-bound) of query selectivity

1. if x0 < l return 0
2. if x0 > r return 1
3. x = �(x0 − l)/δx�
4. let S = 0
5. for p = �τ/δp� , . . . , �1/δp�

(i) S = S + H(x, p)
6. return (S/m)

Fig. 3. Algorithm for estimating query selectivity for unbounded range queries

Note that the above discussion applies to a <τ x queries only. For unbounded range
queries of the form Q : a >τ x, we have the following result:

a >τ x ⇔ Pr(a > x) > τ ⇔ Fa(x) < 1 − τ (2)

Using Equation 2 we can see that if an uncertain item a does not satisfy the query
a <1−τ x (i.e. Fa(x) �> 1 − τ ) then it will satisfy the query a >τ x. The algorithms
presented in Figures 2 and 3 can therefore be used for >τ queries with slight modifi-
cations. The selectivity of > can be calculated by computing the selectivity of < and
using the fact that selectivity for >τ is 1 - selectivity for <1−τ .
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Theorem 3. The time complexity of algorithm presented in Figure 2 is:

m−1∑

i=0

(
Rui

δx

)

+ O

(
R

δx

)

Proof. The first terms comes from Step (1) in which we go through each item once for
each uncertain item. Finally we add up all the contributions in the top histogram buckets
in Step (2) which gives us the second term in the above expression.

4.2 General Range Queries

As discussed earlier, a general range query Q is expressed as Pr(x1 < a < x2) > τ .
This query returns all tuples such that:

Pr(x1 < a < x2) > τ ⇔
∫ x2

x1

fa(x)dx > τ

⇔ Fa(x2) − Fa(x1) > τ

The previous section on unbounded range queries is a special case of the general
range query where x1 = −∞ (or l) or x2 = ∞ (or r).

We can extend the earlier solution to general range queries by adding another dimen-
sion to the histogram. In addition to the x-axis and y-axis representing x2 (end-point of
the range query) and the probability threshold τ respectively, we will now have a z-axis
representing x1 (or the beginning of range query).

The theoretical discussion of this selectivity estimation solution is similar to the un-
bounded case. In place of a 2-D curve, we will now have a 3-D curve for each uncertain
item which is given by the function:

Ga(x1, x2) =
∫ x2

x1

fa(x)dx = Fa(x2) − Fa(x1) (3)

The range query Q will now translate to a box query given by x < x2, y > τ and
z = x1. We can now state the following theorem for the 3-D curve:

Theorem 4. Each item for which Ga(x1, x2) intersects the box defined by query Q is
part of the result of query Q. That is, ∀a, where the function Ga intersects the box
defined by query Q, we have Pr(x1 < a < x2) > τ .

Proof. We observe that for any cdf Fa that lies in the box of query Q, we know that
Ga(x1, x) > τ for some x < x2. This gives us that Ga(x1, x2) > Ga(x1, x) > τ .
Using 3, we have P (x1 < a < x2) > τ .

Similar to Theorem 2, we can prove that we can count the total number of items in the
result set by counting the total number of intersections of function Ga with the line-
segment x = x2, τ < y ≤ 1 in the z = x1 plane. The definition and construction
of 3-D histogram is similar to the 2-D counterpart and is presented in Figure 4. The
algorithm for estimating the answer size for a given query Q(x1, x2, τ) is presented in
Figure 5.
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Input
ui, 0 ≤ i < m : All the uncertain items
δx, δp : Width of histogram along x,z and y axis
l, r : The left and right bounds for the histogram

Output
H : The histogram structure for the input data

0. Initialize H,Hx, Hz, Hxz with all bucket heights = 0
1. for a = u0, u1 . . . , um−1 do

(i) let xmin = �(la − l)/δx�, xmax = �(ra − l)/δx�
(ii) for z = xmin, . . . , xmax do

for x = z, . . . , xmax do
(a) p = Ga(l + zδx, l + (x + 1)δx)
(b) if (z = xmin) ∧ (x = xmax)

Hxz(x, �p/δp� , z)++
(c) else if (z = xmin)

Hz(x, �p/δp� , z)++
(d) else if (x = xmax)

Hx(x, �p/δp� , z)++
(e) else H(x, �p/δp� , z)++

2. let xmax = �R/δx�
3. for p = 0, . . . , �1/δp�

(a) for x = 0, . . . , xmax

for z = xmax − 1, xmax − 2, . . . , 0
Hz(x, p, z) += Hz(x, p, z + 1)

(b) for z = 0, . . . , xmax

for x = 1, 2, . . . , xmax

Hx(x, p, z)+ = Hx(x − 1, p, z)
4. for x = 0, . . . , xmax

for z = xmax − 1, xmax − 2, . . . , 0
Hxz(x, �1/δp�, z) += Hxz(x, �1/δp�, z + 1)

5. for z = 0, . . . , xmax

for x = 1, 2, . . . , xmax

Hxz(x, �1/δp�, z) += Hxz(x − 1, �1/δp�, z)
6. for all x, z, p

H(x, z, p) += Hz(x, p, z) + Hx(x, p, z) + Hxz(x, p, z)
7. return H

Fig. 4. Algorithm for generating the histogram structure for general range queries

We can apply an optimization similar to the algorithm in Figure 2 by modifying only
the local histogram area which is affected by an uncertain item and then propagating the
effects globally by adding a post-processing step. This optimization helps in bringing
down the running time of the algorithm significantly. To achieve this goal we keep three
temporary histogram tables Hx, Hz and Hxz along with the main histogram structure
H . For an uncertain item a, Step 1 adds the contribution of the item to the main his-
togram H , along with adding the contributions that are to be propagated globally to
the temporary histograms. Hz and Hx store the contribution to the bins corresponding
to z = la and x = ra respectively, while Hxz stores the contribution to the bin
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Input
x1, x2, τ : Parameters of a query Q
H : Histogram structure
m : Total number of uncertain items
δx, δp : Width of histogram bucket along x,z and y axis
l, r : The left and right bounds for the histogram

Output
An estimate (upper-bound) of query selectivity

1. if x1 < l x1 = l
2. if x2 > r x2 = r
3. let x = �(x2 − l)/δx�, z = �(x1 − l)/δx�
4. let S = 0
5. for p = �τ/δp�, . . . , �1/δp�

(i) S = S + H(x, p, z)
6. return (S/m)

Fig. 5. Algorithm for estimating query selectivity for general range queries

corresponding to z = la and x = ra. It is easy to see that the local contribution of
the item a to Hz needs to be propagated to the plane given by la ≤ x < ra and z < la
as for these values Pr(z < a < x) = Pr(la < a < x) (Step 3a). Similarly, Hz

needs to be propagated globally to the plane la < z ≤ ra and x > ra as for this plane
Pr(z < a < x) = Pr(z < a < ra) (Step 3b). In a similar fashion, Hxz is propagated
to z < la and x > ra (Step 4 and 5). Finally, we add all the temporary histograms to
the main histogram to get the final histogram structure (Step 6).

Theorem 5. The time complexity of algorithm presented in Figure 4 is:

m−1∑

i=0

(
R2

ui

2δ2
x

)

+ O

(
R2

δ2
xδp

)

Proof. By counting the number of loops. All the steps in Figure 4, except for Step 1,
touch the cells only constant number of times. The number of loops in Step 1 gives the
first summation.

4.3 General Range Queries Using Slabs

In Section 4.2 we discussed how the histogram construction technique can be extended
to general range queries. While the accuracy of such an estimate is very good, the
initial construction time and space trade-off is quadratic in terms of the range of the
input data (R). In this section, we present another technique which has, in general, a
lower accuracy than the previous technique but better space-time complexity.

In this algorithm, we partition the entire range of input data into slabs. Similar to
histograms, the length of a slab is controlled by the input parameter δx. Each slab
stores estimates of query selectivity for different values of p. A slab with end-points
at x = x1, x2 stores the selectivity of a bounded range query Q(x1, x2, τ) for different
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values of τ . Once again, the number of divisions (estimates) along the probability axis is
controlled by δp. Note that, for a query that spans multiple slabs, we cannot just add the
contributions of individual slabs. To solve this problem, we have a hierarchy of slabs.
The size of slab at the bottom-most level of this hierarchy is exactly δx but as we go up
the hierarchy the size increases exponentially until we reach the top-most slab, which
encompasses the entire input region. At each level of the hierarchy there are two1 sets
of slabs, one starting at the midpoint of the other, so that we can get better estimates.
We call these slabs A and B, respectively.

Formally, we have log(R/δx) hierarchical levels, with each hierarchical level having
two sets of slabs A(i, j, p) and B(i, j, p) where j ≤ 
log2(R/δx)�.

Definition 2. The slabs A(i, j, p) and B(i, j, p) cover the regions R1 = [l + 2jiδx, l +
2j(i + 1)δx] and R2 = [l + 2j(i + 1/2)δx, l + 2j(i + 3/2)δx] respectively. The height
of the slab A(i, j, p) (or B(i, j, p)) is given by the number of uncertain items satisfying
the bounded query R1 (or R2) with probability between pδp and (p + 1)δp.

As mentioned earlier, each of these slabs stores the query answers for different values of
query threshold τ . Thus, every A(i, j) or B(i, j) is an array of �1/δp
 values. The con-
struction algorithm is presented in Figure 6. In Step 1, for each item, we find the slabs
that are affected by the item and add the contribution of the item to the corresponding
slabs.

Input
ui, 0 ≤ i < m : All the uncertain items
δx, δp : Parameters controlling width of divisions
l, r : The left and right bounds for the input region

Output
The slab structure for the input data

0. Initialize A and B with all buckets heights = 0
1. for a = u0, u1, . . . , um−1 do

(i) for j = 0, 1 . . . , �log2(R/δx)� do
(a) let xmin = �(la − l)/(2jδx)�,

xmax = �(ra − l)/(2jδx)�
(b) for x = xmin . . . xmax do

(A) let p = Ga(l + x2jδx, l + (x + 1)2jδx),
(B) A(x, j, �p/δp�)++

(c) let xmin = �(la − (l + 2j−1δx))/(2jδx)�,
xmax = �(ra − (l + 2j−1δx))/(2jδx)�

(d) for x = xmin . . . xmax do
(A) p = Ga(l + 2j(x + 1/2)δx, l + 2j(x + 3/2)δx)
(B) B(x, j, �p/δp�)++

2. return A,B

Fig. 6. Algorithm for generating slabs

1 In general, we can have more than two sets of slabs for each level of hierarchy which will
further increase the accuracy of this technique.
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Once we have this slab structure, we can get estimates by finding a pair of slabs that
contains (over-estimate) and is contained (under-estimate) by the query region. With
these estimates, we interpolate the estimates based on the the interval size to get the
final estimate. The algorithm for finding the estimate is presented in Figure 7. In the
algorithm, Step 1 picks j which corresponds to the slab size just smaller than the query.
We have two additional functions pickLB and pickUB, which given the query limits and
a level j, returns the slab that is contained inside and contains the query respectively.
If these functions can not find any such slab at level j they return null. For j < 0,
these functions simply return a slab with size 0 and all estimates are set to 0. In the
case, these functions find more than one slab which satisfy the conditions of UB (LB)
they return the one with minimum (maximum) estimate. This is done in order to get
a tighter bound on the final estimate. The details of these functions are omitted due to
space considerations. Steps 2 and 3 find the slabs and return them. Once we have a slab
TLB that bounds the answer from below and a slab TUB that bounds the answer from
above, we find the selectivity estimates of TLB and TUB in Step 6 and then finally in
Step 7 we linearly interpolate the estimates based on the size of query and size of the
two intervals returned. This gives us an estimate of the query result size.

Lemma 1. For any query Q, the difference between the levels, from which TLB and
TUB are picked up, is at most 2. Thus, the space covered by TUB is at most 4 times that
of TLB.

Proof. It follows from the cases of Figure 7. It remains to show that the else cases in
Step 2(b) and Step 3(a),(b) are always successful in finding a slab. Note that the size
of the slab at level j is less than the query interval. So a slab at level j could fit in the
query. If this happens with the A slab being contained, then there is a slab at level j + 2
that surely contains the query. This is because, an A slab at level j + 1 contains at least
one end-point of the query, and hence at level j +2, since an A slab and a B slab extend
this A slab at level j + 1 in different directions, at least one of the A slabs at level j + 2
or B slabs at level j + 2 will cover the entire interval. If at level j, the query covers a B
slab, then it cuts two consecutive A slabs at level j and hence it is covered in either an
A slab or a B slab at level j + 1. If the query does not cover any slab at level j, then it
again cuts two consecutive A slabs at level j. This means it is covered by a slab at level
j + 1. Also, it cuts at least one of these A slabs by more than half at the level j. Thus,
there is an A slab at level j − 1 which is contained in the query.

Theorem 6. The time complexity of algorithm presented in Figure 6 is:

O

(
m−1∑

i=0

(
Rui

δx

)

+ m log
(

R

δx

))

Proof. The above result directly follows from the following expression which is the
total cost of Step 1.

m−1∑

i=0

log(R/δx)∑

j=0

⌈
Rui

2jδx

⌉
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Input
x1, x2, τ : Parameters of a query Q
A,B : Slab structure
m : Total number of uncertain items
δx, δp : Parameters controlling width of divisions
l, r : The left and right bounds for the histogram

Output
An estimate of the query selectivity

1. let j = �log2((x2 − x1)/δx)�
2. if (T = pickLB(x1, x2, j)) exists

(a) TLB = T
(b) if (T = pickUB(x1, x2, j + 1)) exists

TUB = T
else TUB = pickUB(x1, x2, j + 2)

3. else
(a) TLB = pickLB(x1, x2, j − 1)
(b) TUB = pickUB(x1, x2, j + 1)

4. let Smin = Smax = 0, t1 = length of TLB ,
t2 = length of TUB

5. for p = �τ/δp�, . . . , �1/δp�
(a) Smin += TLB(p), Smax += TUB(p)

6. S = Smin + (Smax − Smin) × (x2 − x1 − t1)/(t2 − t1)
7. return (S/m)

Fig. 7. Algorithm for estimating query selectivity using slabs

Similarly, we can also show that the total space overhead is O (R/δx). Both these results
are intuitive if we observe that the total cost/space is asymptotically bounded by num-
ber of slabs at the bottom-most level as the number of slabs at higher levels decrease
exponentially.

5 Experimental Evaluation

We have implemented our statistics collection and selectivity estimation algorithms in
Orion, a publicly available extension to PostgreSQL that provides native support for un-
certain data [3]. To efficiently evaluate the queries discussed in this paper, Orion uses an
indexing scheme known as probabilistic threshold index (PTI) introduced in [18]. This
system not only allows us to validate the accuracy of our methods in a realistic runtime
environment, it also gives additional insight into the overall effect our techniques have
on query optimization in an industrial-strength DBMS.

5.1 Implementation

PostgreSQL measures the cost of query plans in disk page fetches (for simplicity,
all CPU efforts are converted into disk I/Os). The optimizer generally estimates the
cost of query plans by calculating the overall selectivity and multiplying it against the
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estimated cardinality. In the common case of multiple predicates, individual selectivies
are multiplied together, except for range queries where the dependence between the
lower and upper bounds is simple to evaluate.

Virtually every numeric data type in PostgreSQL shares the same source code for
cost estimation. Using this code base, we have built our implementation of the algo-
rithms in Figures 2, 4, 3, and 5. Using the elegant framework PostgreSQL provides
for new data management techniques, our implementation extends the functionality
of Orion’s UNCERTAIN data type by registering the optional callbacks for collecting
statistics and estimating selectivity.

5.2 Methodology

To ensure correctness, we ran each experiment on a variety of queries and datasets, and
then averaged the results. After populating the database with each test dataset, we first
used VACUUM ANALYZE to generate the statistics in advance. The following experi-
ments were conducted on a 1.6 GHz Pentium CPU with 512 MB RAM, running Linux
2.6.17, PostgreSQL 8.1.5, and Orion 0.1. Note that most of the resulting plots show the
relative error of the selectivity estimates, i.e. the goal is to be as close to 0% as possible.

Synthetic Datasets. Each dataset consists of random “sensor readings,” using a schema
Readings (rid, value). Without loss of generality, the uncertain values (i.e.
reported from the sensors) are floating point numbers ranging from 0 to 1000, and the
pdf for each uncertain value is a uniform distribution. The interval sizes are distributed
normally, with midpoints distributed uniformly. We refer to our three main datasets as
Data-5, Data-50, and Data-100; the numbers correspond to the average width of
the uncertain value intervals.

Table 2 summarizes the control variables for the subsequent experiments. In particu-
lar, we show that our algorithms perform well without regard to dataset cardinality, and
are reasonably robust to query selectivity and probabilistic threshold. In addition, we
demonstrate the effect of increased precision as a trade-off between construction time
and space versus the resulting accuracy of the selectivity estimates.

Example Query Plan. To illustrate the impact that correct estimates have on query
optimization, we present the following example output from PostgreSQL. When no
selectivity estimation function is available for a given predicate, PostgreSQL simply
returns the default value of 1/3 for estimating unbounded range queries, and 0.005 for
general range queries. In practice this estimate favors the use of unclustered indexes,
such as PTI [18], to improve I/O performance:

Table 2. Summary of control variables

Variable Default Value

Cardinality 250,000
Selectivity 2.5 %
Threshold 50 %
Precision 70 bins
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SELECT * FROM Readings WHERE value < 750;
-----------------------------------------
Bitmap Heap Scan on Readings
(cost=742.33..4075.67 rows=66667 width=36)
(actual=20379.348..20824.652 rows=153037)
Recheck Cond: (value < 750::real)

-> Bitmap Index Scan on pti_value
(cost=0.00..742.33 rows=66667 width=0)
(actual=20378.677..20378.677 rows=153K)
Index Cond: (value < 750::real)

With accurate estimates, the optimizer makes the correct decision, namely not to use
the available PTI index:

(same query as before, but using our algorithms)
------------------------------------------------
Seq Scan on Readings

(cost=0.00..5000.00 rows=164333 width=35)
(actual=83.841..15545.401 rows=153037)
Filter: (value < 750::real)

As shown in this example, accurate selectivity estimation saves the system thousands
of disk fetches (i.e. 15545 total cost instead of 20825). In general, incorrect estimates
may result in much higher losses of efficiency.

5.3 Results

We now evaluate the accuracy and performance of our cost estimation techniques for
unbounded range queries using the 2D histogram structure introduced in Section 4.1
(see Figure 3), and general range queries using the 3D histogram discussed in Section
4.2 (see Figure 5).

Accuracy at Varying Selectivities: The first experiment verifies the accuracy of our
algorithms, regardless of query selectivity. Figures 8 and 9 summarize the results using
all three synthetic datasets. For clarity, we have only plotted one of them. The x-axis
shows the selectivity of the query which was varied from high (1%) to low (100%). The
y-axis shows the accuracy of the estimation as a percentage relative to the size of the
exact result. Our algorithm significantly outperforms the baseline PostgreSQL estimate.
As expected, high selectivity has a slight effect on the accuracy of our methods.

Accuracy at Varying Cardinalities: The next experiment studies the overall scalability
of our algorithms, namely the impact of the size of the relation on the accuracy of the
estimations. Figures 10 and 11 show the results for three representative queries. The
x-axis shows the size of the table in number of tuples which was varied from 50,000
to 800,000. The results show that our approach is unaffected by the size of the dataset.
This is in sharp contrast to the baseline PostgreSQL estimator (not shown) which is
much more sensitive to the dataset size, particularly for smaller datasets.

Accuracy at Varying Thresholds: Figures 12 and 13 show the impact of query thresh-
old on the accuracy of the estimates. The x-axis shows the threshold probability and the
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Fig. 8. Selectivities (2D)
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Fig. 9. Selectivities (3D)
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Fig. 10. Cardinalities (2D)
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Fig. 11. Cardinalities (3D)
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Fig. 12. Thresholds (2D)
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Fig. 13. Thresholds (3D)

y-axis shows the relative accuracy with respect to the correct answer size. Once again,
we observe that our algorithm is much more robust than the baseline PostgreSQL esti-
mator (not shown) that simply returns a constant selectivity. Our implementation shows
slightly better accuracy for smaller thresholds, in part because larger thresholds result
in additional tuples becoming part of the query answer, leading to overestimates. We
can see that for highly selective queries, our algorithm is significantly better that the
baseline and thus it is more likely to lead the optimizer into choosing a much more
efficient plan.
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Fig. 14. Precision (2D)
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Fig. 15. Precision (3D)

Accuracy at Varying Precisions: Next we show the relationship between the size of
the histograms and the resulting accuracy. Figures 14 and 15 summarize the results for
each dataset. The x-axis shows the number of histogram buckets in each dimension,
which was varied from 10 to 100. Clearly, both algorithms perform better with a more
detailed histogram. Our algorithm outperforms the baseline for smaller histograms. As
expected, we see that after a certain amount (i.e. 70, for these datasets and queries),
larger histograms do not provide significant increase in accuracy.

Runtime Performance Overhead: The final set of experiments study the runtime per-
formance of constructing the statistics and estimating the selectivity of a query. We have
omitted figures for these findings because of limited space. As expected, the estimation
times are constant and almost negligible (on the order of 15 ms). The histogram con-
struction times scale linearly with respect to data cardinality, and grow a little more than
linear as the requested number of buckets increases. For the bulk of our experiments,
histogram construction only amounted to several hundred milliseconds.

6 Conclusions and Future Work

In this paper, we developed algorithms for computing selectivity estimates of proba-
bilistic queries over uncertain data. The estimation techniques can be applied both to tu-
ple uncertainty and attribute uncertainty models. These techniques were implemented in
PostgreSQL and found to provide accurate estimates for uncertain data. The algorithms
presented can be further improved by combining them with standard cost estimation
techniques such as equi-depth binning and sampling. We showed both theoretically and
empirically that our histogram construction algorithms are fast. The experiments show
that they give very accurate estimation especially for less selective queries. For more
selective queries, the accuracy is not quite as good, but is still much better than the
baseline estimator.
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