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ABSTRACT
In this paper we address the problem of ensuring the cor-
rectness of query results returned by an untrusted private
database. The database owns the data and may modify it at
any time. The querier is allowed to execute queries over this
database; however it may not learn anything more than the
result of these legal queries. The querier does not necessarily
trust the database and would like the owner to furnish proof
that the data has not been modified in response to recent
events such as the submission of the query. We develop two
metrics that capture the correctness of query answers and
propose a range of solutions that provide a trade-off between
the degree of exposure of private data, and the overhead of
generation and verification of the proof. Our proposed solu-
tions are tested on real data through implementation using
PostgreSQL.

1. INTRODUCTION
Consider the case of the food supply chain which is made

up of multiple entities: farms, processing plants, distribution
centers, warehouses, and retailers. These entities are typi-
cally independent, each with its own database that keeps
track of its operations. Each entity would like to prevent
other entities from learning the details of its operations as
this may yield an advantage to a competitor. However, there
are instances where it is necessary to provide access to some
of this private data in order to enhance public safety, and
comply with regulations. For example, if a packet of beef
sold at a given store is found to be contaminated, it is nec-
essary to recall all other packages that may also be infected.
This entails searching through the private databases of var-
ious entities in the supply chain, beginning with the retailer
that sold the package that has been found to be contam-
inated, and working backwards (i.e. to the distributors,
packagers, etc.) to locate the source of the problem and
then working forwards to track all possibly infected pack-
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ages. The current solutions to this problem are manual in-
volving paperwork and result in long delays, sometimes days.
An automated solution to this problem would essentially re-
move these long delays and result in almost instantaneous
detection.

Automatic detection requires interaction between multi-
ple private databases involved in the food supply chain. To
support such queries, the database owners can provide a lim-
ited interface into their databases that can be used either by
other entities in the supply chain, or a federal organization.
There is however, one major problem: since the databases
are under the control of individual organizations, there is
no guarantee that changes are not made to the database
in order to produce misleading results. Providing incorrect
results can help an organization protect itself or a partner
from blame, and shift the blame to another innocent party.
Once again, it is desirable that the external querier be able
to obtain proof that the results returned by the database do
reflect the correct evaluation of the submitted query over an
uncorrupted version of the database.

More generally, consider the case where a law enforcing
agency (e.g. the FBI) wants to query a corporate database
for the purpose of ensuring compliance with regulations.
The entity owning the data may be concerned about privacy
and not willing to reveal its entire database to this agency.
At the same time, there is an issue of trust. The federal
agency cannot blindly trust the corporation to provide un-
corrupted results, and would like to receive some proof from
the database (which the agency cannot contest) that it has
provided the correct result. This proof must handle the case
that the database owner could have changed the data once
the investigation has begun to mislead the agency.

A similar problem exists with virtually any situation where
mutually distrusting entities need to exchange some data
while preserving the privacy of the rest of the database.
Emerging and recent regulations such as Sarbanes Oxley,
and CFR 22 part 11 also impose constraints on the handling
of data owned by corporations. Solutions that can provide
guarantees of correctness of queries over these databases
without exposing the entire contents of the database are
highly desirable. In all these examples, it is in the interest
of the database owner to share data with business partners
or regulatory agencies.

Thus in practice, there is a strong need for providing guar-
antees of correctness of query results executed over a private
database not under the control of the querier. One possible
solution to this problem is to involve an external entity that
is trusted (willingly or by law), e.g. the USDA in the food



supply example. Each database owner then sends a copy
of their database (and updates) to this trusted third party
which can verify that the queries are executed correctly. In
fact, it could execute the queries itself. There are several
problems with this solution: 1) This is a very expensive so-
lution with respect to the volume of traffic to the third party
and also the requirements of storage at the third party; 2)
this third party is a potential weakness in the system – if it is
compromised, then too much private data may be exposed;
3) the trusted party is now liable for the privacy of the data
– it may be subjected to lawsuits claiming that it has leaked
(willingly or unwillingly) private data of one organization to
another; and 4) such solutions would be resisted by privacy
advocates since there is too much of a “Big Brother” flavor.

To the best of our knowledge, this problem has not been
addressed earlier. Existing solutions for tamper proofing au-
dit trails [15], or privacy-preserving database access [9, 1],
and authentic third-party data publication [4, 6, 11] are not
applicable in this domain as discussed in the related work
section. In this paper we propose scalable solutions for the
privacy-preserving query result verification problem and de-
velop a number of solutions that provide a tradeoff between
the overhead for the owner, the efficiency of the verification,
and the degree of exposure of the owner’s database in or-
der to prove the correctness of a query. However, it should
be pointed out that our solution is directly applicable to
the authentic third party data publication and the tamper
proofing of audit trail problems too (with no modification
whatsoever) with the added advantage that we do not need
to trust the owners of these databases.

The specific problem considered in this paper is as follows.
We have two entities - the database owner (Bob) and the
querier (Alice). The two entities do not entirely trust each
other. Bob allows Alice to execute certain queries over his
private database. He is willing to reveal as little information
as possible to Alice, apart from the results of the query.
Alice, on the other hand, is not necessarily confident of the
results she receives and may want a guarantee from Bob
that he has returned the correct results to Alice, without
modifying the database (e.g., after receiving Alice’s query).
Figure 1 shows the high-level model of the problem with the
possibility of a trusted third party. Alice can ask Bob to
commit to his database (while preserving its privacy) before
issuing a query. Alternatively, Bob can periodically commit
the database. In this paper, the notion of “commit” is that
Bob ensures that he can prove the authenticity of these data
at a later point in time. The important parameters of the
problem are: 1) providing a guarantee for correctness; 2) the
overhead on Bob and Alice; and 3) the degree of exposure
of Bob’s data over and above the query results.

In its full generality this problem is very hard to solve.
Note that the database owner can legitimately modify any
value in its database (e.g. the number of cans of soup sold
today). Thus we would need some means of distinguishing
valid modifications from invalid ones. This problem is very
hard to solve, and we believe that it is impractical to pro-
vide guarantees about dynamic attributes – i.e. those that
change over time as part of the operations of the database.
We therefore begin by making the following assumptions to
limit the scope of the problem. We assume that guarantees
can only be provided for data that is not modified after a
given point in time (e.g. the number of cans of soup sold yes-
terday or earlier.). Bob freezes the values of some data items
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Figure 1: Interaction between the entities.

periodically (e.g. daily or every few hours), after which no
modification or deletion of this data is allowed. (To be pre-
cise, modifications are allowed, but their authenticity cannot
be guaranteed.)

The owner generates a proof that it has frozen the database
at regular intervals and ships that proof to an external en-
tity. This could be Alice, or a third party (note that we
do not need to fully trust this third party). The only re-
quirement from the third party (if it is used) is that it does
not modify the proof. The inclusion of the third party is
only a minor issue and does not impact any of the details of
our solution. Consequently, throughout this paper we will
assume that Alice receives the proof. The contributions of
this paper are as follows:

1. Identification and formal statement of the untrusted
private database verification problem;

2. A range of solutions that vary in the degree of privacy
and the overhead of generating and verifying the proof;
and

3. Details of a prototype implementation using PostgreSQL
and experimental validation.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 gives a formal defini-
tion of the problem and the model used in this paper. Sec-
tion 4 provides a brief background on some relevant tools
that will be used in our solutions. Section 5 presents our
proposed solutions. Section 6 discusses implementation de-
tails and experimental results are presented in Section 7.
Section 8 concludes the paper.

2. RELATED WORK
There has been a recent surge in interest in privacy con-

cerns for databases [1, 9, 2]. Several efforts have focused on
generating data mining results over multiple databases while
preserving privacy [9, 2, 5]. These protocols are highly tai-
lored to the mining algorithm and are not general purpose.
Furthermore, they trust each of the owners of the individual
databases to provide correct data. A malicious participant
can mislead the group. Consequently, they are inapplicable
for the problem studied in this paper.

A recent paper [15] studied the problem of detecting ma-
licious modifications of data by an external intruder. This
is achieved through tamper detection of an audit log of
the database that records all changes. The database is



treated as an append-only database (in particular, a tempo-
ral database). This work does not address privacy concerns
of the database and assumes that the database owner is a
trusted entity. Our solution (with slight modifications) can
be applied to this problem.

Devanbu et al. [4] recently proposed a solution to the
problem of authentic third-party database publication. This
problem deals with a database owner that wishes to use a
third party to host his data. The owner does not entirely
trust the third party and would like to ensure that the val-
ues stored in the database are not modified by the host.
Their solution does not address the problem of privacy of
the database. Furthermore, the solution relies upon com-
plete trust of the database owner. Although their solution
bears a superficial resemblance to ours (in terms of the use
of merkle trees), as discussed in Appendix A it is not appli-
cable to our problem. On the other hand, our solution can
be directly applied to the problem of authentic third-party
database publication. Our solution is much more efficient
in terms of storage and computation as compared to the so-
lution in [4]. The solution in [4] needs to specially address
each join and selection that may be executed by the querier.
Our solution does not suffer from this limitation. A related
paper [3] addresses similar issues for XML.

The problem of private outsourcing of a database has also
been studied [7] wherein a semi-trusted third party is used to
host a database. To protect privacy, the data is encrypted
by the owner and stored only in encrypted format at the
host. This introduces challenges for efficient execution of
queries and creation of indexes [8].

To the best of our knowledge the problem of ensuring
correctness over untrusted private database has not been
addressed earlier.

3. ASSUMPTIONS AND MODEL
In this section, we describe the assumptions and trust

model for the entities involved in the protocol.

3.1 Querier (Alice)
The database is located in a remote location over which

Alice has no control. The database owner (Bob) determines
what types of queries are allowed to be executed. In order
to prove that the results of allowed queries are correct, the
database periodically commits (“freezes”) its current state.
Subsequent queries must be guaranteed to return results
computed over this committed state. Any change to the
committed values should be detected. Alice may demand
proof of correctness for a given result and ask Bob to com-
mit the database before submitting a query. Correctness of
the results is only guaranteed over the committed data.

In case of an update over the committed data, Alice will
either detect this modification or Bob should send Alice the
value of the tuple at the time it was frozen. The appli-
cation semantics determines which of the above actions is
more appropriate. In either case, this does not restrict the
applicability of the results of this paper.

3.2 Database owner (Bob)
The database owner controls the private database. He has

unconditional read and write access to the database. He can
intercept all the queries posed to the database and their re-
sults, and may even modify the results. In order to prove
the correctness of the query results, Bob explicitly generates

a proof by freezing the data. Note that since Alice does not
trust Bob, some proof of the freezing must be shipped out-
side of the database where it cannot be modified by Bob.
This can be achieved by either sending some information to
Alice, to a semi-trusted third party, or by using an indepen-
dent authentication authority. We assume that whatever
data is frozen by Bob is correct. In practical settings, this is
the same as recording entries in an accounts ledger – since
the entries can be audited, the owner is discouraged from
recording incorrect data. Similarly, for the current prob-
lem, there needs to be in place a mechanism that enables
a random audit of frozen data in order to ensure that Bob
does not freeze incorrect data. Once a data item is frozen,
the protocol should not allow him to modify it – i.e. Bob’s
hands should be tied with respect to the frozen data. This is
a reasonable assumption given that the event which causes
Bob to become malicious and skew the results to his favor
does not happen before Bob generates and sends the proof.
Nevertheless, we do not trust Bob to follow the algorithm
correctly. He may try to find loopholes in the protocol to
generate a proof that does not tie his hands completely (e.g.
as discussed in Appendix A, instead of freezing a tuple to
one value, Bob may try to freeze it in such a way that allows
him to report two or more possible values for that tuple).

There is no restriction on how the query results can be
modified. Further, Bob is concerned about the privacy of
the database. He wishes to reveal only a minimal amount
of information to Alice, in addition to the query results.

3.3 Definition of Correctness
There are two aspects of correctness of query results. We

now present two requirements for the correctness of query re-
sults returned by a private database. Without loss of gener-
ality, we can denote the result tuples of a SPJ query (queries
involving only select, projects and joins) as:

Ri = RT1

i1
‖RT2

i2
. . . ‖R

Tq

iq

where ‖ denotes concatenation, Ri is the ith tuple of the

result and R
Tj

ij
refers to the value of projected attributes of

tuple ij of table Tj . We divide the correctness requirements
into α- and β-correctness as defined below:
α-correctness: This refers to the correctness of the result
values, i.e. the validity of the tuple values returned by the

query. Formally, this implies that the values returned, R
Tj

ij
,

must match the values that were frozen when the proof was
generated.
β-correctness: This refers to the correctness of query exe-
cution. It implies that joins and selections were performed
correctly and the ith tuple of the result should in fact consist
of data from tuples i1, i2, . . . iq of tables T1, T2, . . . Tq respec-
tively. This definition also checks for absence of valid tuples
from the result set.

To understand β-correctness intuitively, it is helpful to
picture the database table as collection of tuple ids only.
E.g. for a selection query β-correctness only tests whether
the correct tuple ids are part of the result – it does not
check whether the data corresponding to these tuple ids is
unmodified. In case of joins, it checks that correct pairs
of tuple ids from two tables are in the result. While β-
correctness does not check the tuple contents, α-correctness
ties the tuple id to its contents, and ensures that they are
not tampered.



R
A B

a1 b1

a2 b2

S
A C D

a1 c1 d1

a1 c3 d2

a2 c2 d1

Figure 2: Example tables for Query Correctness.

Consider two relations, R(A,B) and S(A,C, D), and the
query πB,C(σS.D=d1

(R 1R.A=S.A S)). Example instances of
the two relations are shown in Figure 2. The correct result
of the query should be the tuples: {< b1, c1 >, < b2, c2 >}.
α-correctness requires the database to prove beyond any
doubt that the tuples in the result are indeed committed
values. For this specific example, this amounts to prov-
ing that b1 and b2 are part of some frozen tuples in ta-
ble R (and similarly for c1 and c2). β-correctness requires
that the selections and joins are correctly performed and
all the resulting tuples are returned. For example, if the
database only returns: {< b1, c1 >} (an incomplete result),
or {< b1, c1 >, < b2, c2 >, < b1, c3 >} (incorrect selection)
or {< b1, c1 >, < b2, c2 >, < b1, c2 >} (incorrect join) then
Alice should be able to discover this inconsistency. Note
that all these results are α-correct as the values returned do
belong to some tuple in the table. The β-correctness proof
will verify that the tuples containing the values returned (as
certified by α-correctness) are in fact the result of the query.

These two definitions are independent of each other and
together imply the correctness of query results. As de-
scribed later, for some specific cases we may not need the
β-correctness requirement in order to verify the correctness
of query results.

3.4 Query
The solutions proposed in this paper can guarantee α-

correctness for any arbitrary query over the database. How-
ever, for the case of the more challenging β-correctness, we
need to limit the types of queries to the form:

πp1,p2,...,pm(σs1=a1,s2=a2,...,sn=an(T1 1 T2 1 . . . Tq))

where p1, p2 . . . pm, s1, s2, . . . sn are the attributes of the ta-
bles T1, T2, . . . , Tq of the database. The joins between the
tables are assumed to be equality joins.

Our approach can also prove correctness for queries whose
results are essentially derived from queries of the type shown
above (e.g. aggregate queries). By proving the correctness
of the underlying query, we can show that the derived query
was also correctly evaluated. For example, we can prove
correctness for a query that computes an aggregate over a
set of tuples generated by a query of the type shown above.
However, in order to prove its authenticity, we would have
to expose the values of the underlying tuples (i.e. we can
not ensure the privacy of underlying query and expose only
the aggregate).

4. PRELIMINARIES
This paper employs two standard data security tools: strong

one-way hash functions [13] and Merkle Trees [10]. We pro-
vide a brief description of these tools before discussing the
proposed solutions.

4.1 One-Way Hashing
A one-way hash is a function, h, that takes as input a

data item, x and produces as output the hash of the data
item, y = h(x). Important requirements for a one-way hash
function are:

1. Given a hash value, y, and the details of the hashing
function h, it is very difficult to find x such that h(x) =
y. In other words, given the hash of a data item it is
hard to work back and determine the data value that
generated this hash value.

2. The probability that h(x) = h(y) for x 6= y is very
low. That is, it is very unlikely that two different input
values will yield the same hash.

Therefore, given a hashed value, y, it is virtually impos-
sible to discover any data value that yields y as its hash
value. If a value x is known, then it is virtually impossible
to generate a second value z such that h(z) = h(x). Thus,
given a hash value y, it is possible to determine x such that
y = h(x) only if x is already known (or one gets extremely
lucky). There are many well-known and commonly used
strong one-way hash functions, such as SHA-256.

Another important class of hash functions are cryptograph-
ically secure keyed hash functions, denoted by hk. These
work in much the same way as a one-way hash function, but
they take as an additional input, a key, k. With such a func-
tion, given x it is not possible to determine hk(x) even if we
know the hash function unless the key k is also known.

4.2 Merkle Trees
A Merkle tree [10] is a binary tree (not necessarily com-

plete) with labeled nodes. The labels are binary strings
of length k. Let Φ(n) represent the label of node n, thus
Φ(n) ∈ {0, 1}k. The label for each internal node of the tree,
nparent, with children, nleft and nright, is derived from the
labels of its children using a hash function, h as:

Φ(nparent) = h(Φ(nleft) ‖ Φ(nright))

The function h is a candidate one-way function such as SHA-
256. The above equation gives assignment of Φ for internal
nodes. For leaf nodes, Φ is usually chosen depending upon
the application of merkle trees. For example, Φ for a leaf can
be the hash of a small part of a document whose integrity
we want to establish.

Merkle trees are used to establish the authenticity of the
leaf node labels. This is achieved by simply publishing the
value of the root’s label. Publishing in this context, refers
to recording the value in a manner that cannot be modified
later. This can be achieved by printing this value in a news-
paper, or using an authentication service. With this pub-
lished and unmodifiable value, one can now establish that
the value for any of the leaf labels has not been modified
after the publication of the root’s label. Consider for exam-
ple, the merkle tree shown in Figure 3. In this example, the
labels for the leaf nodes correspond to the hash values of
data items whose authenticity we would like to establish. In
order to prove that the value of the data item x (shown as
shaded box in the figure) has not been modified, we simply
need to provide the value of x (the hash function for the
tree is well known), and the labels of the sibling nodes on
the path from x to the root. These nodes are shown as black
circles in the figure. This path is called the authentication
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Figure 3: An example Merkle tree. The black nodes
form the authentication path of shaded data block.

path for x. To verify the authenticity claim, one computes
the labels of the nodes along the path using the definition
of Φ for internal nodes. If the computed label for the root
matches the previously published value then the value of x
is authenticated.

To see why this is so, consider what happens if the value
of x has indeed been modified. Given the new value of x, one
would have to create labels for each sibling such that after
repeated computations of the parent labels, the final hash
value is the same as the one that was generated earlier. By
the very nature of one-way hash functions, this is extremely
difficult to do, thus the labels cannot have been modified.

5. PROPOSED SOLUTIONS
In this section, we discuss several solutions with vari-

ous degrees of privacy, computational complexity and data
bandwidth. For the moment, we assume that the query con-
tains only selection operators and we are only verifying the
α-correctness of the query results in each of these solutions.
We will discuss the general case later. For each solution,
we discuss the Proof of integrity that must be shipped
by Bob whenever he freezes the data, and the Verification
steps that Alice must carry out in order to establish the au-
thenticity of query results in case she suspects foul play. We
begin with a very simple solution to illustrate the nature of
the problem. In the rest of the paper, the term database
refers to the part of Bob’s private database that is frozen.

In all of these solutions, the hash function h is assumed
to be public. The hash function implementations normally
take a sequence of bytes as input and returns an output of
fixed length. Using this, we can define the function h on
any chunk of data in the database. For an attribute value,
hash is simply the hash of bytes representing that value. For
bigger units like a tuple or (ordered) set of attributes, h is
defined as hash of concatenation of all the attributes making
up that tuple or set respectively.

In some solutions we assume that each tuple is identified
uniquely. This can be achieved by using RIDs, or for sim-
plicity, generating an explicit ID within the database.

Solution 1.
Proof of integrity: Bob computes the hash of the entire
database and sends it to Alice.
Verification: If challenged by Alice to prove the authentic-
ity of the results of a query, Bob ships the entire contents of
the database to her. Alice can easily i) verify that the result
values are indeed part of this database; and ii) compute the
hash of this database and verify if the overall hash match
the earlier proof. If these two values match, then Bob must
have sent the same database that was used to generate the
earlier proof (given the difficulty of finding two numbers that
hash to the same value) and has not modified it since.

This approach has the advantage that the database owner
needs to send only one number (the hash value) to Alice.
However, this is obviously a very bad solution since it vio-
lates the privacy of Bob’s database as he has to reveal the
entire database when challenged. The bandwidth required
for verification is also huge as the entire database needs to
be shipped for verification.

Solution 2.
Proof of integrity: We consider a strong hash function h
such as SHA-256. For each tuple ri in the database, Bob
generates hi = h(ri) and ships (i, hi) ∀i to Alice.
Verification: As the result of a query, Alice gets back (i, ri)
for i in the result set. She can easily hash the result tuples
and verify their integrity. In other words, no extra data is
needed for Alice to verify the query results.

The i used in this solution can be something which uniquely
identifies a tuple in a database table such as RID. We can
use other approaches which do not use RIDs such as sending
the individual hashes in sorted order of hash value, but using
RIDs makes the exposition easier. This approach respects
the privacy of Bob’s database. There is no communication
between Bob and Alice during the verification phase as she
has all the information needed to verify the results. This
approach can very easily be implemented by maintaining a
separate field for the hash along with each tuple. The hash
is updated whenever a tuple is inserted or modified. Al-
though this increases privacy, it is not very practical as the
size of the proof is proportional to the size of database. The
size of the proof, rather than the size of the verification, is
the major concern as verification may be rare (only when
challenged by the querier) as compared to sending the proof
of integrity (which may be periodic).

Solution 3.
Proof of integrity: Let the tuples to be frozen be r1, r2, . . .
, rn. Bob computes the hash of individual tuples r1 . . . rn

with hash function h to generate a1 . . . an, where ai = h(ri).
Next, he computes the hash of a1 . . . an to generate the final
proof which he ships to the querier. Thus the proof is a
hash-tree (of height 1) over the hashes of individual tuples.
Verification: Let the result set S be set of all tuple numbers
returned by the query. i.e., the result of the query is a set
{(j, sj)}, j ∈ S. In order to verify this result, Alice asks
Bob for (i, ai), ∀i /∈ S. She computes the hash of each
result bj = h(sj), j ∈ S. Finally, she computes the hash
over bj and aj hash values received from Bob. Hence, Alice
computes: h(c1||c2|| . . . ||cn) where ci = bi if i ∈ S, and
ci = ai, otherwise. If this overall hash value equals the
proof sent earlier by Bob, then Alice is convinced that the
result values were indeed part of the frozen database.



Similar to the previous solution, this approach also re-
spects the privacy of the database. But now, the proof size
is reduced to just one number (the final hash) at the cost of a
greatly increased verification size. This overhead associated
with hashing is comparable to that in the previous approach.
Assuming the result set is small, the size of the verification is
proportional to the size of the database. Unless verification
phases are rare and bandwidth for verification is not a con-
cern, this approach is not practical. However, this approach
may be useful in situations where the result set is large.

Solution 4.
Proof of integrity: This approach uses merkle tree to re-
duce the size of the verification from O(N) to O(log N),
where N is the size of the database. Bob computes a merkle
tree as described in Section 4. The definition of merkle trees
gives the assignment of Φ for internal nodes. For leaf node
li, Φ(li) = h(ri), where ri is the ith tuple in the database.
Bob sends Φ(root) as proof of integrity to Alice.
Verification: For verification, Bob sends authentication
path for the result tuples that need to be verified to Al-
ice. The length of such a path is equal to the height of
the tree, which is proportional to O(log N). Alice computes
the hash over the result that she has received and the hash
values along the authentication path supplied by Bob. If
the overall hash generated by Alice using the result values
and the authentication path hashes matches the proof sent
earlier, all result tuples are authenticated.

This approach preserves database privacy as it reveals
only the hashes of tuples that are not part of the result.
Thus Alice learns nothing about the values of the other data
items. While the size of the proof is the same as in Solu-
tion 3 (one single hash), the size of the verification is greatly
reduced from O(N) to O(log N). The computational com-
plexity is proportional to the number of nodes (both leaf
and internal) of the merkle tree. For a binary tree with N
leaves, the total number of nodes is 2N − 1. Therefore, the
computational complexity of this approach is only twice as
much as the previous solution.

Table 1 summarizes the above solutions and their prop-
erties. These solutions were developed for proving only the
α-correctness of the results with the assumption that no
projections are performed and the result set size S is small
compared to the database size N . However, as explained
below, they can be extended to more general queries.

5.1 α-Correctness for General Queries
As discussed above, Solution 4 is superior to the others for

verifying the α-correctness. We next describe this approach
in detail for verifying the α-correctness for general queries.

5.1.1 Granularity of Hashing
In all of the above solutions, we have assumed that the

granularity of hashing is at the tuple level. The granularity
directly determines how much information must be revealed
during verification. Consider a table that has attributes A =
{a1, a2, . . . , an} and the query returns an attribute set B ⊂
A. During verification, for each result tuple, the values of all
A − B attributes must be revealed for the querier to verify
the α-correctness of the results (as the hash of a complete
tuple is needed). This increases the data bandwidth required
for verification and reduces the privacy of the database.

To overcome this problem, the granularity of hashing can

be adjusted so that no additional information is revealed
during verification. For the above example query, Bob would
hash B and A − B separately, i.e. Φ(tuple) = hash(Φ(B) ‖
Φ(A − B)), where Φ(S) = h(S) for any S ⊂ A. Now, in
order to verify a result tuple which has only B attributes,
we do not need to reveal the other A − B attributes – only
the hash of the A − B attributes for that tuple is sent to
Alice. This enables the database to mask private attributes
that are not part of the result.

With a finer granularity of hashing, we can avoid violat-
ing the privacy of the database when the query result does
not include all the attributes of a table. However, it has a
price associated with it. A finer granularity of hashing will
increase the authentication data needed for verifying a data
item. At the same time, switching to a much finer granular-
ity will increase the time needed to generate the proof and
verify the results (as described in Section 7).

Consequently, a judicious choice of the granularity for
hashing needs to be made in order to balance the cost of
generating a proof and the degree of exposure of private
data during verification. Given a set of queries that are al-
lowed to be executed over a relation, let Ri ⊆ T be the set
of attributes queried by query i. The granularity of hashing
for a relation T , GT = {A1, A2, . . . Am}, Aj ⊆ T , is decided
such that

1. Ai

T

Aj = φ, ∀i, j ∈ {1, 2, . . . m}, i 6= j; and

2. ∀i,∃Ji ⊆ {1, 2, . . . m}, such that Ri =
S

j∈Ji
Aj

The first condition ensures that we do not include an at-
tribute in more than one hash, which would incur costs in
terms of efficiency and space. The second condition implies
that we always have a subset of hashed attributes that will
cover all the attributes projected by any query. In absence
of knowledge about which subsets of attributes are likely
to be queried, we can treat each attribute as one of the Ai

sets. This allows us to provide maximal privacy for all the
attributes.

Solution 5α.
We now present the final solution for proving α-correctness
for arbitrary SPJ queries, and also address an important
attack for domains with small cardinality. We redefine Φ(li)
for a leaf node li of the merkle tree as

Φ(li) = hash(tuple id‖Φ(Ai
1)‖Φ(Ai

2)‖ . . . ‖Φ(Ai
m))

where Ai
j refers to the value of attribute(s) Aj for ith tuple

and Φ(Ai
j) = hash(Ai

j). With this definition, the leaf nodes
of the merkle tree are no longer labeled h(ri) corresponding
to tuple ri. Instead, the hash values of the various sets of
attributes values h(Ai

j) form the new leaf level. The next
level up contains one node for each tuple ri of the database.
Its label is the hash of the concatenation of labels for the
m leaves of tuple ri: h(Ai

j), j = 1..m and the tuple id for
ri. This grouping together of the hash of attributes of one
tuple simplifies the implementation and allows Alice to easily
verify whether two attributes reported (by Bob) as part of
one tuple in fact belong to the same tuple and not to two
different tuples.

5.1.2 Handling attributes with small domains
The security of hash functions depends on the assump-

tion that the domain of the hash function is large. If the



Solution 1 Solution 2 Solution 3 Solution 4

Size of Proof O(1) O(N) O(1) O(1)
Cost of Proof O(N) O(N) O(N) O(N)
Size of Verification O(N) 0 O(N) O(log N)
Cost of Verification O(N) O(S) O(N) O(log N)
Exposure of Data complete exposure no exposure no exposure no exposure

Table 1: Summary of various approaches (N is the database size and S is the size of result set)

domain is small (e.g. age) a simple dictionary attack will
allow the querier to deduce the attribute values from their
hashes. The querier simply hashes each possible value (e.g.
every age from 1 to 120) to produce the corresponding hash.
Comparing these hash values with the hash values of private
fields allows the querier to determine the value of the field.
We solve this problem by generating the hash of the data
value concatenated with another value not known to Alice.
This secret value is called “salt”.

We redefine Φ(Ai
j) for attributes with small domain car-

dinality to be:

Φ(Ai
j) = hash(Ai

j‖Si,j)

Si,j = hk(table id‖i‖j)

where Si,j , is the salt for attribute j of tuple i, and hk is a
cryptographically secure keyed hash function. The key k is
kept secret by the database owner.

Ii In

root

I1

tuple_id Φ(Aj
i
) Φ(Am

i
)Φ(A1

i
)

Aj
i Si,j

Figure 4: Hash tree for α-correctness. The shaded
nodes forms the authentication path of data item Ai

j

The size of the salt Si,j must be large enough to make
dictionary attacks computationally very difficult for Alice.
Si,j must be revealed to Alice for verification of Ai

j . Figure
4 shows a hash tree and the complete authentication path
for a data item Ai

j . In order to verify an attribute value,

Alice will be given both the value of the data (Ai
j) and the

value of the corresponding salt (Si,j) used to generate the
proof. Since the salt is released for verification, we cannot
use a single value for all data items. Managing different salt
values for each data item can be quite cumbersome (and
consume storage) for Bob. To avoid both these problems,
we define the salt in such a way that it can be easily derived
by using a keyed hash function hk.

As described in Section 3, the α-correctness of results
alone does not establish the correctness of query execution.
However, in some special cases, verifying only the α-correctness
suffices. For example, if the total number of tuples that must
be returned by a query is known and all join and selection
attributes are retained in the result, then the correctness of
query results is completely determined by its α-correctness.

Note that we can verify the α-correctness of the results
for any general query. The restriction on queries given in
Section 3 is necessary only for verifying β-correctness.

5.2 Verifying β-correctness
In the previous section, we discussed how we can use

merkle trees to establish the α-correctness of the results
which ensures that all the tuples returned by the query were
indeed those frozen by the database. In this section we pro-
pose a solution for establishing β-correctness that ensures
that all the results for a query were sent to the querier.
For this purpose, we need to ensure that the query engine
performs all the joins and selections correctly. This is chal-
lenging because Bob, the database owner, is not willing to
reveal the entire database due to privacy concerns. Merkle
trees can be very bandwidth efficient for α-correctness as dis-
cussed previously, but they cannot be used for β-correctness.
This is due to the fact that we need information about the
entire database (as opposed to authenticating a part of the
database) for verifying the β-correctness.

As discussed earlier (Section 3), for β-correctness we will
assume that the queries only contain equality joins. We use
a modified version of the hash tree described in Solution 3.
First, we need to define the granularity of hashing to prevent
violation of privacy similar to what was proposed above for
α-correctness in Solution 5α.

Without loss of generality, let us assume that the query is

qi = πPi
(σSi

(Ti1 1Ji
Ti2))

where Pi ⊆ Ti1 ∪Ti2 are projected attributes, Si ⊆ Ti1 ∪Ti2

are selection attributes and Ji ⊆ Ti1 (and Ji ⊆ Ti2) are
join attributes. Note that the selections and joins are both
based on equality (Section 3). To prove the β-correctness
of results without revealing any additional information we
enforce the following conditions on the granularity GT =
{A1, A2, . . . , Am}, Aj ⊆ T ,

1. Ai

T

Aj = φ, ∀i, j ∈ {1, 2, . . . m}, i 6= j; and



2. ∀i,∃Ki ⊆ {1, 2, . . . m} and ∃Li ⊆ {1, 2, . . . m}, such
that Ji =

S

k∈Ki
Ak and Si =

S

l∈Li
Al

In other words, we identify maximal, disjoint subsets of at-
tributes of each relation T such that we can obtain each of
the sets required for selections and joins over this relation
for every query. Note that we can always satisfy these condi-
tions by picking each set Ai consisting of a single attribute.

Ii In

root

I1

tuple_id Φ(Aj
i
) Φ(Am

i
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i
)

Aj
i Sd(Aj

i
)

Figure 5: Hash tree for β-correctness

Solution 5β
The hash tree over a database table for proving β-correctness
is defined as follows:

Φ(root) = hash(Φ(l1)‖Φ(l2)‖ . . . ‖Φ(ln))

Φ(li) = hash(tuple id‖Φ(Ai
1)‖Φ(Ai

2)‖ . . . ‖Φ(Ai
m))

Φ(Ai
j) = hash(Ai

j‖Si,j)

Si,j = Sd(A
i
j)

where, Sd(A
i
j) is the digital signature of Bob on value Ai

j

with the private key d. The corresponding public key e is
known to Alice. As described later, using a simple keyed
hash as the salt (similar to our solution for α-correctness)
is not sufficient to ensure the β correctness. Figure 5 shows
the hash tree described above. The nodes l1, l2, . . . , ln cor-
respond to each tuple of the table.

We have included tuple id in the definition of Φ(li) sim-
ilar to the definition of Φ(li) for α-correctness. Keeping
this unique identifier along with the tuples in both (α and
β) trees helps Alice to verify that the authentication paths
provided by Bob for α and β proofs are for the same data
item. If we remove tuple id from the above definition, it is
possible for Bob to fool Alice, by providing an authentica-
tion path for one tuple for α-proof verification and path for
a different tuple for β-proof verification (possibly having one
or more attribute values equal to the first tuple). Without
the unique tuple ids, Alice will have no way to verify if the
two proofs point to the same tuples. Thus, tuple ids serve
to link the two proofs together.

During the proof sending phase, the database owner, Bob,
only sends Φ(root) for each table to Alice. If Alice requests
verification after executing a query, Bob sends (for all tables

involved in the query) Φ(Ai
j), ∀i, j and Si,j for all the Aj

attributes that are involved in a selection.
Alice checks if the value of Φ(root) sent for each table

matches the value calculated by using hash of all Φ(Ai
j) sent

by Bob. If that succeeds, she only needs to prove that the
joins and selections are performed correctly by the database
to prove β-correctness.

To verify if selections were performed correctly, Alice checks
the following condition for all selections of the form Aj = aj

(where aj is a constant): ∀i, if Φ(Ai
j) = hash(aj‖Si,j) then

tuple i is present in the result. Additionally, she needs to
verify that for the tuples returned in response to the query,
the signature Si,j matches the signature of Bob. This can
be verified by using Bob’s public key e.

If the value of salt Si,j is chosen to be hk(Ai
j) (similar to

α-correctness), it is possible for Bob to actually return two
(or more) different sets of answers in response to a single
selection query and provide a correctness proof for each of
them. This is against our assumptions where we want Bob
to commit to exactly one state of the database. This attack
is possible because Bob may choose to use different keys
for the hash function instead of using just one key for all
the tuples in the database (as required by the protocol).
Defining Si,j as Bob’s digital signature on attribute value
and later verifying it at Alice’s end prevents this problem.

To verify if the join was performed correctly, Alice checks
the following for attributes (say Aj) of joined tables: ∀i1, i2 =
1, 2, . . . , n if Φ(Ai1

j ) = Φ(Ai2
j ) then tuples i1 and i2 are in-

cluded in the result.
Our solution for α and β correctness requires Bob to send

2|D| (root nodes of two trees per table) hashes during the
proof sending phase, where |D| is the number of tables in
the database. These hashes can be easily combined into one
hash to reduce the proof size at the cost of one extra level
in all the authentication paths.

6. IMPLEMENTATION
We have implemented our proposed solution in PostgreSQL

[12]. The algorithms for generating hash trees over the
database were implemented in PL/pgSQL. We used the im-
plementation of the hash function SHA-1 from OpenSSL
crypto library [14] for our experiments. The database has
been extended to allow the owner to freeze the data values
by generating proof, and to support authentication of query
results. Whenever the querier wants the database to freeze
its data, it issues a send proof command to the database.
On receiving the send proof command the database sends
a single hash value to the querier. If the querier wants to
verify the results, it issues a send verify command to the
database. On receipt of send verify the database returns
the authentication paths for all the tuples in the query re-
sult being verified. For simplicity, we have implemented an
append-only database. But it is relatively easy to extend
it for general databases. In particular, we have to write an
update trigger to update the hash tree whenever data in a
node is modified. We have implemented Solution 5α and 5β.

The hash trees can be generated over the tuples when the
send proof command is received by the database. How-
ever, this approach will have a large overhead on receipt of
send proof. A better alternative will be to generate the
tree as tuples are added to the database. This approach
distributes the load evenly during the database updates.

For generating and storing the tree, we add the following



tables to the database. We create a new table – hash tree
(node id, phi, parent) to store the generated hash tree. In
this tree representation, the ordering of the child nodes is
not explicit. For a given parent node, the child nodes are
implicitly ordered by increasing node ids. For example, the
child with lowest node id is considered as the leftmost child.
A global counter (count) is used to obtain new node id val-
ues. The schema of each original table in the database is
modified to add a new attribute called node id. A tempo-
rary table, height table(height, node id) is also used.

1. Let h=hash(table(tuple id))

2. INSERT INTO hash tree (count++, h, NULL)

3. current node=count -1

4. UPDATE table SET node id = current node WHERE
key=tuple id

5. current height=0

6. Let temp = SELECT node id FROM height table
WHERE height = current height

7. If temp 6= NULL

(a) h=hash(hash tree(temp)‖
hash tree(current node))

(b) INSERT INTO hash tree (count++, h, NULL)

(c) UPDATE hash tree SET parent id = (count - 1)
WHERE (node id = temp OR node id = cur-
rent node)

(d) DELETE FROM height table WHERE height =
current height

(e) current height++; current node = count -1

(f) GOTO 6

8. else INSERT INTO height table (current height, cur-
rent node)

Figure 6: Pseudo code for add node(tuple id, table).
tuple id is the new tuple that is to be added to the
tree and table is the database table in which tuple id
resides

Upon insertion of a new tuple into the database, the add node
algorithm (refer Figure 6) is executed (by means of a trig-
ger). The add node algorithm constantly maintains a for-
est of partial merkle trees over the rows of the database.
The roots of such trees are stored in a temporary table,
height table. On receipt of a send proof (Figure 7) re-
quest, the database merges these partial trees into one tree
and returns the root of this tree as the proof.

After the send proof algorithm is executed, the database
has a complete merkle tree over the database. Given this
merkle tree, the send verify algorithm is easy. For each
tuple in the result, the database returns an authentication
path with the help of the hash tree table. Note that the
authentication paths of these tuples will overlap and this
can be used to further reduce the size of verification data.
The querier on receipt of this authentication path calculates
the hashes and traces back the authentication path to the
root and checks if the final hash matches the value sent to
it earlier by the send proof algorithm.

The implementation of our solution to prove β-correctness
is relatively easy because of the simplicity of the hash tree
structure defined for it.

1. For temp = SELECT node id FROM height table
ORDER BY height do

(a) If this is the first iteration then set node=temp
and jump to next iteration

(b) Let h = hash(hash tree(temp).phi ‖
hash tree(node).phi)

(c) INSERT INTO hash tree (count++,h,NULL)

(d) UPDATE hash tree SET parent = count-1
WHERE (node id = node OR node id = temp)

(e) node = count-1

2. return hash tree(node).phi

Figure 7: Pseudo code for send proof

6.1 Efficiency
A number of optimizations are possible for the algorithm

presented above to reduce the space overhead associated
with maintaining the merkle trees on the database side.
These optimizations come at the cost of additional process-
ing required by the database during the proof verification
phase. This may be desirable if we assume that the verifica-
tion phase is rare (i.e. only when the querier suspects foul
play and asks the database to send authentication paths).
To achieve this, we note that the entire trees are not required
in the add node and send proof algorithms. We only need
the root of the partial trees generated. We can easily ignore
the hash tree table and store the hashes of trees at height h
in the height table (note that there can be only one tree at
height h). This reduces the space overhead tremendously,
but a ready-made merkle tree over the database will not
be available when the send verify command is received.
Thus, before executing this algorithm the merkle tree that
was used to generate the proof will need to be recreated.
This increases the time complexity of the send verification
algorithm.

Further, we did not consider the situation where the querier
requires a proof periodically. In this case, we can introduce
optimizations with various space-time tradeoffs on both the
database side and the querier side. (1) Bob can either main-
tain one large merkle tree over the entire database and send
the root of this tree whenever he needs to send the proof.
In this approach, the size of the merkle tree will gradually
increase. This will increase the amount of data that is ex-
changed between the two parties for proof sending and ver-
ification; or (2) The other approach is to maintain many
merkle trees – one merkle tree for each proof that Bob sends
to Alice. Each merkle tree only covers the data that is added
after the last proof was sent. This keeps the size of the
merkle trees very small. The disadvantage is that Alice has
to keep all the previous hashes corresponding to data on
which she can possibly run a query at any future time.

7. EXPERIMENTAL RESULTS
The experiments were performed on a SUN SPARC work-

station with 1GB of RAM. Data from a Walmart data ware-
house was used for all the experiments.

7.1 Overhead of proof generation
In this experiment, the overhead due to proof generation

was studied. We generated a hash-tree for α-correctness
verification over different table sizes. The schema of the ta-



ble used for this experiment is sales(item id, units sold).
First, tuples were inserted into the database. Then a hash
tree over these tuples was generated. Tuple level granularity
was used while generating the hash tree. For comparison,
the time taken by the database in inserting the tuples is
also plotted along with the cost of α-correctness proof gen-
eration. Figure 8 show the results of this experiment for
different table sizes. The x-axis gives the number of tuples
added to the relation, and the y-axis gives the actual time
taken for the insertions in seconds. This time was measured
using the UNIX time utility. The graph shows the time re-
quired to insert a tuple and also the time required to make
necessary changes to the trees. Note that this implemen-
tation uses triggers for tree creation which may not be the
most efficient implementation. However, the cost of tree
maintenance is on the same order of magnitude as the cost
of a single tuple insertion.
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Figure 8: Overhead of proof generation

The results establish that the cost of generating the α-
proof hash tree increases linearly with the size of database.
For small table sizes, this cost is roughly equal to the cost
incurred in inserting the tuples in the database. Both these
costs increase linearly and the tree generation cost slope is
roughly twice of that of insertion cost.

For β-correctness, the experiment was run on the same
table described earlier. We expect the overhead of generat-
ing this hash tree to be low. This is because the hash of the
data tuples is already available to us (as they are calculated
during α-correctness proof generation). Secondly, because of
the single level structure of this hash tree, we only need to
compute one additional hash (over all leaves) to obtain the
root hash. Figure 8 presents the results of this experiment.

Once again, we see an almost linear relationship between
the number of tuples in the table and the time required
to process the insertions. The overhead for beta-correctness
proof tree is indeed very small compared to the time required
for generating the α-correctness proof tree.

7.2 Amortizing proof generation cost
In the previous experiments, the hash tree generation was

done lazily – after inserting a large number of tuples. It re-
sulted in a significant overhead whenever the database was
frozen. As mentioned in Section 6, the hash tree genera-

tion can also be done eagerly. This results in a cost penalty
during insertions to the database, but the freezing of the
database is quite fast. In a way, the eager approach amor-
tizes the cost of hash tree generation over insertions.

This experiment compares the two approaches in terms of
α-correctness proof generation. The hashing was done at the
granularity of tuples. The database was periodically frozen
(after insertion of 2000 tuples). Figure 9 shows the time
taken by the two approaches as tuples were inserted into
the table. In case of lazy computation, the flat lines show
the insertion cost. After 2000 insertions, the send proof
command is sent to the database. After receiving this com-
mand the database starts computing the hash tree. This
results in a significant overhead as shown by the vertical
lines. On the other hand, in case of eager evaluation, each
tuple insertion triggers a function that partially computes
the hash tree. This allows the database to quickly freeze
itself, whenever a send proof command is received.
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7.3 Granularity of hashing
As explained earlier, the granularity of hashing determines

the data exposure. While keeping a finer granularity seems
attractive, this has a performance cost associated with it.
This experiment studies the tradeoff between performance
and granularity. The table used for this experiment has 16
attributes and 1000 tuples. Different granularities of hashing
were tested and the merkle tree (for α-correctness) was gen-
erated to measure the performance cost. Figure 10 shows
that the proof generation cost increases linearly with the
granularity. The x-axis represents the cardinality of GT for
the table.

8. CONCLUSIONS
In this paper we addressed the problem of ensuring the

correctness of query results received from a private database.
This is a new problem that has not been addressed earlier.
We proposed a number of solutions for this problem that
differ in degree of exposure, and the cost the generation
of a proof and verification of the results. We defined two
notions of correctness of results. Our solution is able to
prove α-correctness for arbitrary select-project-join queries,
and β-correctness for queries with equality joins. This rep-
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Figure 10: Cost associated with granularity of hash-
ing of attributes

resents a very broad set of queries. The feasibility of our
methods was established through an implementation using
PostgreSQL, and tested with real data. The results show
that the overhead of the proposed approach is on the same
order as the cost of inserting data. While this work repre-
sents a significant step for solving this important problem,
future work will address the more challenging problem of
proving β-correctness for general queries.
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APPENDIX

A. AUTHENTIC THIRD PARTY DATABASE
PUBLICATION

The crucial difference between the model proposed in this
paper and the model of authentic third-party database pub-
lication [4] is that we do not trust the database owner to
follow the proof generation algorithm honestly. Similar to
our α-correctness solution, [4] uses merkle trees to gener-
ate proof of correctness. The algorithm presented in [4] as-
sumes that the database is sorted on the attribute on which
selection is performed. To ensure β-correctness it simply re-
veals one tuple before and after the result set. This ensures
that no tuples are missing from the result. The solution
works because the database owner is trusted with the task
of properly sorting the database on the selection key be-
fore freezing it. While this is a reasonable assumption for
third-party database publication, it does not hold for our
problem model. If we remove the assumption of trust on
the database owner, then the solutions presented in [4] will
not work. This is explained in the following example.

item id units sold

1 105
2 97
3 221
1 105
2 0
3 221

Figure 11: Example database

Consider the example presented in Figure 11. Note that
the database owner Bob has (maliciously) frozen two values
for the number of units sold for item id 2 (along with correct
values for items 1 and 3). This scenario is quite possible if
Bob does not want tie down his hands completely and would
like to change the quantity of item 2 sold based on some fu-
ture information. Given the query Πunits sold(σitem id=2(T ))
If we use the protocol presented in [4], Bob can either report
97 or 0 and provide a proof of correctness for the same! In
our approach, this is not possible as Bob would not be able
to prove β-correctness for this query. Hence, the previous so-
lutions based on the model of authentic third-party database
publication are not applicable to the problem presented in
this paper.


