
U-DBMS: A Database System for Managing

Constantly-Evolving Data

Reynold Cheng† Sarvjeet Singh§ Sunil Prabhakar§

† Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
Email: {csckcheng}@comp.polyu.edu.hk

§Department of Computer Science, Purdue University, West Lafayette, IN 47907-2066, USA.
Email: {singh35,sunil}@cs.purdue.edu

Abstract

In many systems, sensors are used to acquire
information from external environments such
as temperature, pressure and locations. Due
to continuous changes in these values, and lim-
ited resources (e.g., network bandwidth and
battery power), it is often infeasible for the
database to store the exact values at all times.
Queries that uses these old values can pro-
duce invalid results. In order to manage the
uncertainty between the actual sensor value
and the database value, we propose a sys-
tem called U-DBMS. U-DBMS extends the
database system with uncertainty manage-
ment functionalities. In particular, each data
value is represented as an interval and a prob-
ability distribution function, and it can be
processed with probabilistic query operators to
produce imprecise (but correct) answers. This
demonstration presents a PostgreSQL-based
system that handles uncertainty and proba-
bilistic queries for constantly-evolving data.

1 Introduction

Due to advances in sensor technologies, systems that
acquire information from the physical world have at-
tracted tremendous research interests in recent years.
Sensornets [2], for example, acquire temperature, pres-
sure and voltage through a sensor network. Location-
based applications allow locations of targets to be con-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,

Trondheim, Norway, 2005

stantly monitored and queried [5]. A common prob-
lem that is shared by this kind of systems is data un-
certainty. While limited resources such as network
bandwidth and battery power only allow data to be
collected in a discrete manner, physical entities like
temperature and locations are often constantly chang-
ing with time. As a result, the values of the data
stored in the system can be inconsistent with the ac-
tual ones [5, 1]. This problem can be aggravated if
updates are delayed or lost during transmission.

The inconsistency, or uncertainty, between the
database value and the actual value can lead to er-
roneous query results [1]. In order to avoid draw-
ing incorrect conclusions due to data uncertainty, the
idea of introducing uncertainty information into data
has been recently proposed [5, 1]. Instead of storing
the data value received, each data item is modeled as
a range of possible values, together with a probabil-
ity density function that describes the distribution of
the values within the range. This model captures the
uncertainty of applications that deal with constantly-
evolving data. For example, the system can negotiate
with the sensor a fixed bound d. If the system does
not receive any update from the sensor, then the sen-
sor’s current value can be assumed to be within the
uncertainty interval [v− d, v + d] (where v is the value
of the sensor last reported to the server) [5].

To evaluate data uncertainty, probabilistic queries
have been proposed [5, 1]. Answers to probabilis-
tic queries are imprecise. The imprecision of an-
swers is expressed by the probability values aug-
mented to them. Consider a query asking “What
is the id of the sensor that yields the highest tem-
perature value?”. A probabilistic query may yield
{(S1, 0.7), (S2, 0.2), (S3, 0.1)} as the answer, where
(Si, pi) is the probability that sensor Si has a chance
of pi of giving the highest temperature value. Ob-
serve that the probability values accompanied with the
probabilistic answers tells us about the validity of the
answers.

Recently systems have been proposed to manage
data uncertainty. For example, the Trio system [4]
attempts to build a general database that supports
data accuracy and lineage, while in [2], a probabilis-
tic model-based data acquisition system has been pro-
posed for sensor networks.

Our prototype, called Uncertainty-Database
Management System (or U-DBMS in short), aims
at providing uncertainty management for constantly-
evolving data. It is built on top of PostgreSQL [3],
an object-oriented relational open-source database
system. The novel features of U-DBMS are:

1. Meta-queries for specifying and deriving data un-
certainty;

2. Extending semantics of a wide class of SQL oper-
ators to support probabilistic queries;

3. Measurement of probabilistic answer quality; and

4. A modular design that allows easy addition of new
uncertainty types and query operators.

In Section 2 we discuss various issues of probabilistic
queries. Section 3 describes the system architecture
of U-DBMS. Section 4 presents the materials being
demonstrated, and Section 5 concludes the paper.

2 Probabilistic Queries

2.1 Probabilistic Uncertainty Model

To capture data uncertainty, a data scheme known
as probabilistic uncertainty model was proposed in [1].
This model assumes that each data item can be repre-
sented by a range of possible values and their distribu-
tions. Formally, let T be a database of size n, and each
tuple of T be Ti (where i = 1, . . . , n). Each tuple Ti

consists of a uncertain attribute a with two elements:

Definition 1 An uncertainty interval of a, de-
noted by a.U , is an interval [a.l, a.r] where a.l, a.r ∈ <,
a.r ≥ a.l and a ∈ a.U .

Definition 2 An uncertainty pdf of a, denoted by
a.f(x), is a probability distribution function of a, such
that

∫ a.r

a.l
a.f(x)dx = 1 and a.f(x)=0 if x /∈ a.U .

As an example, a.U can be a fixed bound d, which
is a result of negotiation between the database sys-
tem and the sensor [5]. An example uncertainty pdf is
the Gaussian distribution, which models the measure-
ment inaccuracy of location data [5] and data from
sensor network [2]. It can also be a uniform distri-
bution, which represents the worst-case uncertainty
within a given uncertainty interval. Next, we inves-
tigate queries that operate on this uncertainty model.

2.2 Classification of Probabilistic Queries

We describe a classification scheme for probabilistic
queries [1]. To justify why classification is needed, no-
tice that queries in the same class have similar eval-
uation algorithms. Another reason is that probabilis-
tic queries produce probabilistic (or inexact) answers.
The vagueness of a probabilistic answer is captured by
its quality metrics, which are useful to decide whether
the answer is too ambiguous and any action needs to
be done to reduce data uncertainty. Quality metrics
differ according to the query class. To illustrate, de-
note (Ti, pi) be the probability pi that Ti is the answer.
In a range query, an answer (T1, 0.9) is better than
(T1, 0.1) since for the former answer are more confi-
dent that it is within a user-specified range, compared
with the latter one with only a half chance of satis-

fying the query. A simple metric such as |pi−0.5|
0.5 can

indicate the quality of the answer. For a maximum
query, the answer {(T1, 0.8), (T2, 0.2)} is better than
{(T1, 0.5), (T2, 0.5)}, since from the first answer we are
more confident that T1 gives the maximum value. To
capture this, an entropy-based metric is needed [1].

Probabilistic queries can be classified in two ways.
First, we can classify them according to the forms of
answers required. An entity-based query returns a
set of objects, whereas a value-based query returns
a single numeric value. Another criterion is based on
whether an aggregate operator is used to produce re-
sults. An aggregate query is one which involves op-
erators like MAX, AVG – for these operators, an interplay
between objects determines the results. In contrast,
for a non-aggregate query, the suitability of an ob-
ject as the result to an answer is independent of other
objects. A range query is a typical example. Based on
this classification, we obtain four query classes.
(1) Value-based Non-Aggregate Class. An ex-
ample of this class is to return the uncertain attribute
values a which are larger than a constant.
(2) Entity-based Non-Aggregate Class. One ex-
ample query is the range query: given a closed interval
[l, u], a list of tuples (Ti, pi) are returned, where pi is
the non-zero probability that Ti.a ∈ [l, u]. Another ex-
ample is a join over two tables R and S. It returns a
pair of tuples (Ri, Sj , pij), where pij is the probability
that the two tuples Ri and Sj join (using comparison
operators such as =, 6=, >,<).
(3) Entity-based Aggregate Class. An example is
the entity-minimum query: a set of tuples (Ti, pi) are
returned, where pi is the non-zero probability that Ti.a
is the minimum among all items in T . Other examples
are maximum and nearest-neighbor queries.
(4) Value-based Aggregate Class. Queries for
this class include any aggregate operators (e.g., addi-
tion, subtraction, multiplication, division, SUM, AVG)
that involves two or more values. This query yields
l, u ∈ < and {p(x)|x ∈ [l, u]}, where X is a random
variable for the sum of values of a for all objects in T ,

��������	
�	��
��

������

�����������
��

������	����	�	�

���������� ��
�	��
������

������

����	�
��

�������	�	������

������
���	�
��

������	������
	��

Figure 1: The architecture of U-DBMS

and p(x) is a pdf of X such that
∫ u

l
p(x)dx = 1.

The details of evaluation and quality metrics of each
query class can be found in [1]. Next, we discuss how
query classes are supported in U-DBMS.

3 System Architecture

We develop our system on PostgreSQL [3] because it
is an open-source system. Also, its object-oriented de-
sign allows us to extend the functionalities easily with-
out modifying its internal codes. We define new data
types and queries through developing external C li-
braries, and linking them with the PostgreSQL source
codes. Another advantage is that the uncertainty func-
tionalities do not interfere with the original database;
instead, uncertain and certain data can be “blended”
together, and they can be used by database queries at
the same time. The high level architecture of U-DBMS
is shown in Figure 1.

The interface of the query evaluation engine is mod-
ified to interact with both the uncertainty class and
query operators. All other existing data types and op-
erators in the PostgreSQL system (dotted-line boxes)
remain intact. Next, we discuss how the data types
and queries are implemented in U-DBMS.

3.1 Supporting Uncertainty Data

We support three types of data uncertainty: (1) Gaus-
sian, (2) uniform, and (3) histogram. While Gaussian
and uniform distributions are commonly found in ap-
plications, we want to develop a system that is gen-
eral enough to support any kind of pdfs (e.g., Zipf
and Poisson (for describing the frequency of events)).
Moreover, arbitrary operations on an uncertain item
with standard distribution can render a non-standard
distribution. For example, the sum of two uniform
distribution is a triangular distribution. A histogram
allows us more flexibility in query operator implemen-
tation. Internal functions that convert different pdf
types to histogram pdf are also implemented.

In order to represent these data types, we define
the uncertain class (with keyword UNCERTAIN),
as shown in Figure 1. It is a variable-length data type,
which can store an uncertain value (Gaussian, uniform

or histogram). The design of this class is flexible, and
other kinds of uncertainty pdf (e.g. Poisson) can be
added to it with minimal change.

Like other relational database systems, PostgreSQL
stores internal bookkeeping information in catalogs
(which are internally represented as tables). One key
difference is that PostgreSQL stores much more in-
formation in these catalogs, such as data types, ac-
cess methods and functions. Thus, PostgreSQL can
be modified or extended by changing these catalogs.
Moreover, the PostgreSQL server can incorporate user-
written codes through dynamic loading. Thus, the
user can specify a shared library that implements a
new type or function, and these will be incorporated
into the server automatically.

To create a new uncertain data type, we use shared
C libraries to specify the internal representation of the
data type, along with “helper functions” that operate
on the data types. These access functions are speci-
fied by the interface that PostgreSQL uses to interact
with a data type. The query engine interacts with the
uncertain data type through these access functions, as
shown in Figure 1. Once these helper functions are
properly set, the uncertain data type becomes one of
the data types in PostgreSQL.

3.2 Supporting Probabilistic Queries

To support probabilistic queries, we provide Post-
greSQL with the semantics of operations like =, 6=, >,
< on each uncertainty type, using compiled C func-
tions (Figure 1).We have implemented the four classes
of probabilistic queries by defining operations between
an uncertain value and a constant, or between two un-
certain values.

We emphasize that only one uncertainty type, spec-
ified by the UNCERTAIN keyword (with parameters
describing uncertainty pdf type), is used. We choose
not to provide one keyword for each pdf type. A user
should not have to think, for example, what the re-
sulting pdf is when a Gaussian pdf is multiplied with
a uniform pdf. In U-DBMS, the user only needs to
specify the result is UNCERTAIN. The system de-
cides the most appropriate resulting pdf.

4 Demonstration

4.1 Meta-Queries for Uncertainty

(1) Inserting uncertain data. The following state-
ment shows how a table with two attributes (k, a) is
created, where k and a are the primary key and un-
certain value, respectively. The keyword uncertain
specifies that a is an uncertain value.

CREATE table T (
k INTEGER PRIMARY KEY primary key,
a UNCERTAIN);

This schema is used for further discussions. An un-
certain value is inserted as follows:

insert into T values (1,’(g, µ, σ)’);

Here, g specifies that Gaussian distribution is used
and µ and σ are the parameters of the distribution
for this item. The bounds of the uncertainty interval
are not specified explicitly; an environment variable is
used to input the tail-cutoff percentage of the Gaus-
sian distribution in order to convert it to a normalized
distribution bounded by the uncertainty interval. The
environment variable is changeable by users.

Similarly, an uncertain value modeled by a his-
togram is represented as ’(h, min, max, f , data1,
data2, . . ., dataf)’. Here, min and max are the bound-
aries of the interval, and f ≥ 2 is the number of sam-
ple points. The value datai (i = 1, . . . , f) specifies the

probability of the variable at min + (i−1)(max−min)
f−1 .

If the user does not know the nature of the distribu-
tion, an operator called DERIVE U can be used. Given a
series of data values, DERIVE U returns the uncertainty
interval and pdf for it.
(2) Extracting Uncertainty Information. U-
DBMS allows the details of uncertain attributes, like
the lower bound of the uncertainty interval, the uncer-
tainty pdf, and data quality (e.g., mean and variance),
to be extracted. For example, the following query ob-
tains the lower bound of a.U .

select Lower Bound(a) from T;

In the demonstration, the uncertain pdfs are dis-
played as histograms graphically.

4.2 Probabilistic Queries

We will demonstrate queries from each of the four
probabilistic queries classes discussed in Section 2.
(1) Value-based Non-Aggregate Class. In this
class, we show the following query (Q1):

SELECT a FROM T WHERE a > 5;

The uncertainty information of a whose probability
of being larger than 5 is non-zero will be displayed.
(2) Entity-based Non-Aggregate Class. An ex-
ample for this class is a join query (Q2):

SELECT R.k,S.k, p equ(R.a,S.a)
FROM R,S
WHERE R.a = S.a;

The uncertainty attribute a is used to perform an
equality join between tables R and S. The pairs that
join, (R.k, S.k), as well as their probability of join (ob-
tained by function p equ), are returned.
(3) Entity-based Aggregate Class. Here an exam-
ple is entity-minimum query (Q3).

SELECT k, p Emin(a) FROM T;

This query returns a list of the primary keys of
tuples, together with their (non-zero) probabilities of
giving the minimum value (given by p Emin).

(4) Value-based Aggregate Class. An example for
this class is a value-minimum query (Q4):

SELECT p Vmin(a) FROM T;

This query returns the minimum of the uncertain
attributes a from all the tuples in T . The minimum
value returned is an uncertain value itself.

4.3 Probability Threshold and Quality

A user may only want to obtain answers whose prob-
abilities of satisfying a query is larger than a certain
threshold. U-DBMS allows the user to specify this
“probability threshold”. In Q1, for example, a user
may specify a probability threshold of 0.8 by using
“p(a > 5) > 0.8” in the WHERE clause. This returns all
values of a, the value of each is larger than 5 with a
probability of 0.8 or higher.

As also mentioned in Section 2, each query class has
its own metric for measuring the quality of probabilis-
tic query. U-DBMS provides a function called Quality
to return a quality score. Any probabilistic query can
be passed to Quality. Then, Quality decides the query
class and selects the relevant quality metric to com-
pute the quality score.

5 Conclusions

Data uncertainty prevails in systems that monitors
constantly-evolving objects. In this paper we propose
a database system called U-DBMS to manage data
uncertainty. U-DBMS is built upon its PostgreSQL,
which allows new data types and query operators to
be integrated into it easily. Moreover, the uncertain
data can be stored and queried together with the ex-
isting database. In the demonstration we will show
the managing facilities of U-DBMS for four classes of
probabilistic queries.

Acknowledgments

This research is supported by NSF Grants IIS 9985019
and CCR-0010044. We thank the anonymous review-
ers for their insightful comments.

References

[1] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluat-
ing probabilistic queries over imprecise data. In Proc.

of the ACM SIGMOD 2003.

[2] A. Deshpande, C. Guestrin, and S. Madden. Using
probabilistic models for data management in acquisi-
tional environments. In CIDR 2005.

[3] PostgreSQL Global Development Group PostgreSQL
8.0. http://www.postgresql.org/, 2005.

[4] J. Widom. Trio: A system for integrated management
of data, accuracy, and lineage. In CIDR 2005.

[5] O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha.
Updating and querying databases that track mobile
units. Distributed and Parallel Databases, 7(3), 1999.

