
Database Support for
Probabilistic Attributes and Tuples
Sarvjeet Singh #1, Chris Mayfield #2, Rahul Shah ∗3, Sunil Prabhakar #4,

Susanne Hambrusch #5, Jennifer Neville #6, Reynold Cheng †7

#Department of Computer Science, Purdue University
West Lafayette, Indiana, USA
1sarvjeet@cs.purdue.edu
2cmayfiel@cs.purdue.edu

4sunil@cs.purdue.edu
5seh@cs.purdue.edu

6neville@cs.purdue.edu
∗Department of Computer Science, Louisiana State University

Baton Rouge, Louisiana, USA
3rahul@csc.lsu.edu

†Department of Computing, Hong Kong Polytechnic University
Kowloon, Hong Kong, China

7csckcheng@comp.polyu.edu.hk

Abstract— The inherent uncertainty of data present in numer-
ous applications such as sensor databases, text annotations, and
information retrieval motivate the need to handle imprecise data
at the database level. Uncertainty can be at the attribute or tuple
level and is present in both continuous and discrete data domains.
This paper presents a model for handling arbitrary probabilistic
uncertain data (both discrete and continuous) natively at the
database level. Our approach leads to a natural and efficient
representation for probabilistic data. We develop a model that is
consistent with possible worlds semantics and closed under basic
relational operators. This is the first model that accurately and
efficiently handles both continuous and discrete uncertainty. The
model is implemented in a real database system (PostgreSQL)
and the effectiveness and efficiency of our approach is validated
experimentally.

I. INTRODUCTION

For many applications data is inherently uncertain. Exam-
ples include sensor databases (measured values have errors),
text annotation (annotations are rarely perfect), information
retrieval (the match between a document and a query is
often a question of degree or confidence), scientific data
(model outputs, estimates, experimental measurements, and
hypothetical data), and data cleansing (multiple alternatives
for an incorrect value). While existing databases offer great
benefits for handling such data, they do not provide direct
support for the uncertainty in the data. Consequently, these
applications are either forced to manage the uncertainty out-
side the database, or coerce the data into a form that can be
represented in the database model.

Due to the importance of the need for supporting uncertain
data several researchers have addressed this problem. A wide
body of work deals with fuzzy modeling of uncertain data [1].
In this paper we focus on probabilistic modeling. Recent work
on the problem of handling uncertain data using probabilistic
relational modeling can be divided into two main groups. One

deals with modeling and the other with efficient execution of
queries. Work on query processing over probabilistic data has
assumed a simple model – a single (continuous or discrete)
attribute that takes on probabilistic values [2], [3], [4], [5],
[6], [7]. Most of this work is focussed on developing index
structures for efficient query evaluation over probability distri-
bution (or density) functions (pdf). While this work addresses
specific queries (e.g. Range [8], nearest-neighbors [2]), it lacks
a comprehensive model to handle complex database queries
consisting of selects, projects and joins in a consistent manner.
Most of the work is also focused on single table queries.

Recently proposed models for probabilistic relational data
deal with the representation and management of tuple uncer-
tainty (with the exception of [6]). These models are naturally
well-suited for applications with categorical uncertainty. Under
tuple uncertainty, the presence of a tuple in a relation is
probabilistic, and multiple tuples can have constraints such as
mutual exclusion among them. The recently proposed models
[9], [10], [11] generalize most of the earlier models for
probabilistic relational data. In contrast, attribute uncertainty
models [6], [12] consider that a tuple is definitely part of
the database, but one or more of its attributes is (are) not
known with certainty. The model in [6] allows an uncertain
value to take on a continuous ranges of values, but all other
work has been focussed on the case of discrete uncertainty
(i.e. an enumerated list of alternative values with associated
probabilities). Continuous uncertainty models easily capture
the case of discrete uncertainty. Discrete uncertainty models
can handle continuous uncertainty by sampling the continuous
pdf, but are forced to tradeoff accuracy (lots of samples) or
efficiency (fewer samples).

This paper presents a new model for representing proba-
bilistic data that handles both continuous and discrete domains
and allows uncertainty at the attribute and tuple level. To the

best of our knowledge, this is the first model that handles
continuous pdfs and is closed under possible worlds semantics
(Section I-A). The model can handle arbitrary correlations
among attributes of a given tuple, and across tuples. Although
this model is motivated by attribute uncertainty, it can directly
handle tuple uncertainty, and thus is more general. The under-
lying representation for arbitrarily correlated uncertain data
in our model is based upon multi-dimensional pdf attributes.
Our approach results in a more natural representation for
uncertain data primarily due to the fact that our chosen data
representation better matches how uncertainty is modeled in
applications. A second advantage of our model is its space ef-
ficient representation of uncertain data. This efficiency results
in improved query result accuracy and lower processing time.

As an example, consider an application which uses sensors
to measure locations of objects. For simplicity, assume that
location is a 1-dimensional attribute. There is an uncertainty
associated with readings of any sensor in the real world. We
assume that the error for each reading is represented by a
Gaussian distribution with a given variance around the ob-
served sensor value (mean), in line with the well-known error
for GPS devices. A large variance (i.e., large uncertainty in the
reading) might be the result of poor quality of sensors or other
environmental factors. Table I shows the values returned by the
sensors. (Gaus represents a gaussian distribution followed by
the parameters of the distribution – mean and variance).

TABLE I
EXAMPLE: SENSOR DATABASE

Sensor ID Location
1 Gaus(20,5)
2 Gaus(25,4)
3 Gaus(13,1)

Now consider the case where we use tuple uncertainty
(i.e., discrete uncertainty) to model the sensor database in
Table I. Current tuple uncertainty models will be forced
to make a discrete approximation of the pdf as they only
support discrete uncertain data. This approach has a number
of weaknesses. Firstly, such a representation is not efficient
as we have to repeat certain attribute(s) (e.g., sensor id) along
with each value instance of uncertain attribute(s). Secondly,
either we have to sample many points (not practical) or
sacrifice a great deal of accuracy (not desirable). On the
other hand, if we use the symbolic form of a Gaussian
distribution, obviously the answers will be more accurate as
we are avoiding approximations. Furthermore, as we will
see later, the usual database operations can be evaluated on
symbolic pdfs in a more efficient manner. Note that this
requires built-in support for symbolic pdfs (e.g., Gaussian) in
the database. Our model provides this support, and for non-
standard distributions, we support a generic pdf represented
by histograms (Hist). Histograms give us an approximation for
continuous pdfs, but this approximation is still more accurate
than a discrete approximation. This issue is further explored
in the experimental section.

!

!

Expand Collapse

Probabilistic
Database

Resulting
Prob. Database

Fig. 1. Possible Worlds Semantics

In addition, even in situations where the base uncertain data
is discrete, some queries (e.g. aggregates) can produce results
that are very expensive to represent using discrete pdfs. The
main reason is that the resulting uncertain attribute can have an
exponential number of possible values. In such cases, one can
save space as well as time by approximating with a continuous
pdf. This is exactly what our model proposes.

While our model is tailored towards representing continuous
distributions, it is general enough to be used for modeling
discrete uncertainty as well.

In summary, the salient features of our model are:
1) It handle both continuous and discrete uncertainty (with

arbitrary correlations) natively at the database level, and
is consistent and closed under possible worlds semantics.

2) The first model for uncertain data that can accurately
handle continuous pdfs.

3) The pdf approach leads to a more natural and efficient
representation and implementation than a tuple uncer-
tainty based approach.

A. Possible Worlds Semantics

The definition of relational operators for this model is based
upon the Possible Worlds Semantics (PWS) [13] that has
been commonly used for other work on uncertain databases.
Under these semantics, a probabilistic relation is defined over
a set of probabilistic events. Depending upon the outcome
of each of these events, a possible world is defined. Thus
given a probabilistic relation, we get a set of possible worlds
corresponding to all possible combinations of the outcomes of
the events in the relation. Figure 1 shows a graphical view of
the possible worlds semantics. Given a probabilistic database
and query θ to be evaluated over this database, conceptually
we first expand the database to produce the set of all possible
worlds. The query is then executed on each possible world.
The resulting probabilistic database is defined as the database
obtained by collapsing the possible worlds in which the query
is satisfied.

Consider a database table with uncertain attributes a and
b, as shown in Table II. It consists of two probabilistic
tuples. The first tuple represents a total of 4 possibilities: (i.e.
{0, 1}, {0, 2}, {1, 1}, {1, 2}) and a single (certain) value for

TABLE II
EXAMPLE OF PROBABILISTIC TABLE

a Pr(a) b Pr(b)
0 0.1 1 0.6
1 0.9 2 0.4
7 1.0 3 1.0

TABLE III
POSSIBLE WORLDS

Possible Worlds Probability

0 1 0.067 3
0 2 0.047 3
1 1 0.547 3
1 2 0.367 3

the second tuple. The corresponding set of possible worlds
are shown in Table III along with the associated probabilities
for each world. The semantics of a query over this uncertain
relation are defined as follows. The query is executed over
each possible world (which has no uncertainty) to yield a
set of possible results along with the probability of each
result. The probability values of worlds that yield the same
result are aggregated to yield the probability of that result
for the overall query over the uncertain relation. Consider
a selection query with predicate a < b, over the relation
in Table II. Conceptually, this query is evaluated over each
possible world. The probability that a tuple satisfies the query
criterion is equal to the sum of the probabilities of the possible
worlds in which the tuple satisfies the query. In practice, the
number of possible worlds can be very large (even infinite for
continuous uncertainty). The goal of a practical model is to
avoid enumerating all possible worlds while ensuring that the
results are consistent with PWS. Section III-C shows how our
model handles this particular example.

II. MODEL

In this section, we formally define our model for repre-
senting and querying a database with probabilistic data. We
allow two kinds of attributes – uncertain (or pdf attributes)
and certain (or precise) attributes. The model represents a
set of database tables T, with a set of probabilistic schemas
{(ΣT , ∆T) : ∀T ∈ T} and a history Λ for each dependent
set of attributes in T. A database table T is defined by a
probabilistic schema (ΣT , ∆T) consisting of a schema (ΣT)
and dependency information (∆T). The schema ΣT is similar
to the regular relational schema and specifies the names and
data types of the table attributes (both certain and uncertain).
The dependency information ∆T identifies the attributes in
T that are jointly distributed (i.e., correlated). The uncertain
attributes are represented by pdfs (or joint pdfs) in the table.
In addition to pdfs, for each dependent group of uncertain
attributes we store its history Λ. We will now describe each
of these concepts in detail.

A. Uncertain Data types and Correlations

There are two major kinds of uncertain data types that our
model supports – discrete and continuous. These data types are
represented using their pdfs. The uncertainty model in many
real applications can be expressed using standard distributions.
Our model has built in support for many commonly used
continuous (e.g., Gaussian, Uniform, Poisson) and discrete
(e.g., Binomial, Bernoulli) distributions. These distributions
are stored symbolically in the database. The major advantage
of using these standard distributions is efficient representation
and processing. When the underlying data distribution cannot
be represented using the standard distributions we revert
to generic distributions – Histogram and Discrete sampling.
The histogram distribution consists of buckets over the data
domain, along with the probability density in each bucket.
The discrete sampling simply consists of multiple value-
probability pairs. The bin size (or number of sampling points)
is an important parameter that decides the trade-off between
accuracy and efficiency.

The simple pdf distributions discussed above can be used
to represent 1-dimensional pdfs. But in many cases, there are
intra-tuple correlations present within the attributes. For exam-
ple, in a location tracking application, the uncertainty between
the x- and y-coordinates of an object is correlated. These
more complex distributions are supported in our model using
joint probability distributions across attributes. For example,
to represent the 2-D uncertainty in case of moving objects we
represent the uncertainty by creating two uncertain attributes
x and y which specify the x- and y-coordinates of the object,
respectively. Instead of specifying two independent pdfs over
x and y, we have a single joint pdf over these two attributes.

The information about intra-tuple dependencies is captured
by the schema dependency information ∆T . ∆T is a partition
of all the uncertain attributes present in the table T . It consists
of multiple sets of attributes that are correlated within a
tuple. These sets are called dependency sets. It also contains
singleton sets containing attributes that are uncertain but are
not dependent on any other attributes. The attributes not listed
in ∆T are assumed to be certain.

To illustrate, let us consider a table T with schema ΣT =
(a1:d1, a2:d2, a3:d3, a4:d4), where di represents the data type
of attribute ai. If all the attributes in the table are certain,
∆T = φ. On the other hand, if a1, a2 and a3 are uncertain
and a1, a2 are correlated, this information is represented by
defining the dependency information as ∆T = {a1, a2}, {a3}.
For the example presented in Table I, ΣT = {id : int, x :
real} and ∆T = {x} (x represents the 1-D location). To
model the location as a jointly distributed 2-D attribute, ΣT =
{id : int, x : real, y : real} and ∆T = {x, y}.

Consider the special case when all the attributes in a table
T are jointly distributed (i.e. ∆T = {ΣT}). This extreme
case captures tuple uncertainty as the complete value of the
tuple is uncertain. The joint pdf over the attributes implicitly
represents a group of dependent tuples. In addition, we can
define tuples which are continuous and thus an infinite number

of alternatives are possible for each tuple. This representation
is more powerful that the tuple uncertainty models in which
each tuple can only have a finite number of alternatives.

We allow the dependency information ∆T to contain phan-
tom attributes which are not present in ΣT . These extra
attributes and their corresponding joint distribution are needed
for ensuring that the correlation information of the attributes
that are projected out is not lost during projections (See Sec-
tion III-B for more information). However, only the attributes
in ΣT are visible to the user.

Definition 1: A probabilistic tuple t of table T (ΣT , ∆T) is
represented by values t.aj for all certain attributes aj and pdf
ft(Si) for all sets of uncertain attributes t.Si ∈ ∆T .

To be precise, let us define Xt
Si

to be the random variable
for an attribute set t.Si. Thus, ft(Si) returns a pdf function
that is defined over Xt

Si
. That is, ft : Si → f(Xt

Si
). In the

rest of this paper, whenever we refer to ft(Si), it is understood
that we are referring to the underlying distribution f(Xt

Si
).

B. Partial pdfs

In traditional databases, NULL is used to represent unknown
or missing data. We also use NULL values in our model to
signify missing attribute values. However, there is another
way of representing missing data. The semantics of these two
approaches differ from each other. To illustrate this point, let us
consider the example presented in Table IV. The first tuple has
missing (unknown) values for attribute b and c. However, the
presence of the tuple itself is certain as the probability Pr(b, c)
adds up to 1. The other approach for representing missing
data uses a closed world assumption to represent unknown
information with partial pdfs. The probability that the second
tuple exists in the table is 0.8 (=

∑
Pr(b, c)) and thus with

0.2 probability the tuple does not exist in the table. Although
both these approaches signify missing data their probabilistic
interpretations are quite different.

The usual definition of a pdf requires that it sums up (or
integrates) to 1. We remove this restriction in our model in
order to represent missing tuples with partial pdfs. The support
for partial pdfs is crucial in our model to ensure that database
operations such as selection are consistent with PWS. A partial
pdf is a pdf where only the events associated with the existence
of the tuple are explicitly represented. If the joint pdf of a tuple
sums to x, then 1−x is the probability that the tuple does not
exist, under a closed world assumption. In this paper, we use
the terms pdf and partial pdf interchangeably.

TABLE IV
EXAMPLE: MISSING ATTRIBUTES VALUES VS MISSING TUPLES

a b c Pr(b, c)

1 2 3 0.8
NULL NULL 0.2

2 4 7 0.2
4.1 3.7 0.6

C. History

As discussed in the previous section, we allow multiple
attributes to be jointly distributed in our model. This flexibility
makes the model very powerful in terms of data representation,
by allowing intra-tuple dependencies (i.e. correlation between
attributes). But for the model to be closed and correct under
the usual database operations, we need to handle inter-tuple
dependencies as well. History captures dependencies among
attribute sets as a result of prior database operations. It is used
to ensure that the results of subsequent database operations
are consistent with PWS. This is described in more detail in
Section III. A similar concept is used in many tuple uncertainty
models to track correlations between tuples. [9] uses lineage
and [14] uses factor tables to capture such dependencies. As
we are interested in capturing historical dependencies between
attributes of tuples, our concept of dependencies is different
from this related work, which capture these dependencies on
a per tuple basis.

We maintain the history of uncertain attributes by storing
the top-level ancestors of each dependency set in a tuple. The
function Λ maps each pdf t.S of a tuple t, to a set of pdfs
that are its ancestors.

Definition 2: For a newly inserted tuple t in table T ,
Λ(t.S) = t.S, ∀S ∈ ∆T . If a new pdf t′.S′ is derived from
pdfs t.Si via a database operation, then Λ(t′.S′) =

⋃
i Λ(t.Si).

In other words, the ancestors are the base pdfs which are
inserted in the database by the user. We assume that the base
tuples are independent. All the derived attributes point back
to the base pdfs from which they are derived.

Definition 3: If Λ(t.S1)∩Λ(t.S2) &= φ, then the nodes t.S1

and t.S2 are said to be historically dependent.
Note that the deletion of a base tuple will cause dependency

sets of its derived tuples to lose their ancestor information.
Thus, while deleting a tuple from the base table, we first
check if any other tuple in the database is referencing any
dependency set within the tuple. If there is a reference, we
delete the tuple but keep the dependency set and its pdf
as a phantom node until its reference count falls to zero.
Definition 2 assumes that the base tuples are historically
independent. This is not limiting since a historical dependency
between attribute sets of a base table, can be captured by cre-
ating a phantom ancestor and pointing the dependent attribute
sets to this common phantom ancestor.

III. PROBABILISTIC OPERATIONS

We begin by defining some basic operations on pdfs that
underly the implementation of the usual database operations
for our model. These operators are not directly accessible by
users. One of the strengths of our model is that correctness
with respect to PWS is achieved by manipulating the pdfs.
Next, we present the usual relational operations under our
model. The section concludes with a discussion of new op-
erators that directly operate on the pdfs and are available to
users as extensions to SQL.

A. Preliminaries

Here we describe some basic operations that are needed to
define the usual relational database operations.
marginalize(f, A): Given a pdf f over attributes Af ,

and a subset of attributes A ⊆ Af : the operation produces the
pdf function f ′ over attributes A. This is done by marginal-
izing the distribution f , i.e. f ′ =

∫
Af−A f . For discrete

distributions, the integral is replaced by sum. It is easy to
show the consistency wrt PWS because the probability of an
event is the sum of probabilities of all the possible worlds in
which the event occurs.
floor(f, F): Given a pdf f , on a domain D and given

a subset F ′ ⊆ D, operation floor(f, F) produces a new
pdf f ′ such that values of f ′(x) = 0 whenever x ∈ F and
f ′(x) = f(x) otherwise. This floor operation corresponds
to a selection predicate. The values in F are those which
do not pass the selection criteria and hence do not exist in
the resulting pdf. Going by the PWS, this means that in the
possible world where x takes the value in F , this tuple does
not meet the selection criteria and hence it does not exist.
Multiple floor operations can be successively applied over
a pdf in any order and the result would be floor(f, F1∪...Fk)
regardless of the order in which they are applied.

The application of floor on a symbolic distribution (e.g.
Gaus) will, in general, result in a non-standard partial pdf.
This partial pdf could be potentially captured by a histogram
representation. But, we can optimize the floor operation
(and subsequent operations) significantly, if we store sym-
bolic floors to represent the flooring operation along with
the original (symbolic) distribution. Our model has built-in
support for simple symbolic floors which result from some
common selection predicates. To illustrate, if the distribution
of an attribute x is given by Gaus(5,1) and we apply the
selection predicate x < 5, the resulting pdf will be floored
when x ≥ 5 (and its value is given by Gaus(5,1) when
x < 5). This resulting distribution is represented as [Gaus(5,1),
Floor{[5,∞]}] in our implementation.1

product(f1, f2): Given two pdfs f1 and f2 over attribute
value sets S1 and S2 (in a given tuple t) respectively, the
operation product gives their joint pdf f (over S′ = S1 ∪
S2). We have to consider the following two cases:
f1 and f2 are historically independent: In this case, f(x) =
f1(x1)f2(x2) where x ∈ S1 × S2 and x = (x1, x2). To
illustrate, assuming the pdfs shown in Figure 2(a), (b) are
historically independent, the result of performing the product
operation is shown in Figure 2(c).
f1 and f2 are historically dependent: Let tj .Nj , 1 ≤ j ≤ m
be the common ancestors of t.S1 and t.S2 (i.e. tj .Nj ∈
Λ(t.S1) ∩ Λ(t.S2)). Each tj .Nj represents the distribution of
an attribute set (Nj) of a given tuple (tj). Thus Nj denotes
the set of attributes in tj .Nj . We define Cj = Nj ∩ S′ and
Di = Si −

⋃
Cj , i = 1 or 2. Thus Cj is the set of attributes

1Similar implementation optimizations are possible for other operations
presented in this paper. We skip their discussion in this paper due to space
limitation.

X
-25 -20 -15 -10 -5 0 5 10 15 20 25

pd
f

0

0.005

0.01

0.015

0.02

0.025

0.03
(a)

Y
0 1 2 3 4 5 6 7 8 9 10

pd
f

0

0.05

0.1

0.15

0.2

0.25

(b)

X-25 -20 -15 -10 -5 0 5 10 15 20 25

Y
012345678910

Jo
in

t p
df

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

(c)

Fig. 2. Example of product operation

that the ancestor tj .Nj shares with either S1 or S2 . D1 (D2)
is the set of attributes in S1 (S2) that are not shared with
any common ancestor. Let Xt

S be the random variable for an
attribute set t.S. Let xt

S be an instance of Xt
S. With these

notations, the joint pdf of resulting set t.S′ is:

f(xt
S′) =

{
0, if f(xt

S1
) or f(xt

S2
) = 0

f(xt
D1

)f(xt
D2

)
∏m

j=1 f(xtj

Cj
), otherwise

where, xt
S′ ∈ Xt

D1
× Xt

D2
× Xt1

C1
× Xt1

C1
. . . × Xtm

Cm
× Xtm

Cm

In other words, we first find the group of attribute sets
(D1, D2 and Cj , ∀j) that are independent of each other.
We can multiply the distributions of these nodes as they are
independent. But, that would ignore any floors that were
applied during database operations from ancestor nodes tj .Nj

to t.S1 or t.S2. One potential solution is to keep track of all
the operations and re-apply them2 but we observe that we can
infer the final floors from the distributions of t.S1 and t.S2.
The regions where they were floored are the regions whose
corresponding possible worlds did not “survive” the selection
conditions. Thus, we propagate the floors of t.S1 and t.S2

to the joint distribution. This operator is used for defining
selection and is further discussed in Section III-C. Note that
this operator is associative and hence can be used over more
than two pdfs as well.

B. Projections
Given a table T , we define R = ΠA(T) as the table

which contains a tuple t′ corresponding to each tuple t ∈ R
(t → t′), such that the resulting schema ΣR = A. The
new dependency information ∆R can contain some of the
attributes that are projected away. These attributes and their
corresponding distributes are kept to ensure that we do not
loose any floors associated with the projected out attributes.

2This method, though correct, is very inefficient and will not scale with
database size and number of operations.

∀Si ∈ ∆T , where Si ∩ A &= φ or
∫

ft(Si) &= 1, we keep
Si ∈ ∆R. A number of optimizations are possible to reduce the
number of extra attributes that are kept in ∆R. For example,
instead of the complete set Si, we can keep a subset S′

i such
that for each tuple, S′

i functionally determine Si.
The history of the new sets is updated to history of sets from

which they are derived i.e. ∀t′ ∈ R and ∀Sk ∈ ∆R where
t → t′ and Sk ⊆ Si (Si ∈ ∆T), we have Λ(t′.Sk) = Λ(t.Si).

Similar to other models for uncertain data, we do not
address the issue of duplicate elimination in projections in this
paper. This is because the concept of duplicate elimination
for probabilistic data in general leads to complex historical
dependencies. As part of our ongoing work, we are extending
our model to address duplicate elimination.

C. Selections

Given a table T with attributes ΣT and a boolean predicate
Θ(A) defined over a subset of attributes A of table T , the
result of the selection operator is R = σΘ(A)(T). If all the
attributes in A are certain then we can simply use the “usual”
definition of select operator to get the result. If not, selection
will introduce new dependencies in the resulting set R, as
explained below.

Case 1 All the attributes ai ∈ A are certain: The schema
ΣR = ΣT and the dependency information ∆R = ∆T .
A tuple t ∈ T maps to a tuple t′ ∈ R (i.e. t → t′),
if Θ(t.A) is true. That is, t′.ai = t.ai, ∀ certain ai and,
ft′(Si) = ft(Si), ∀Si ∈ ∆R. The history is simply “copied
over” for all the dependency sets i.e. ∀Si, Λ(t′.Si) = Λ(t.Si).
As an example, the result of performing a selection σid=1(T)
on the relation T presented in Table I would give us a single
tuple t = [1, Gaus(20, 5)].

Case 2 At least one of the attributes ai ∈ A is uncertain:
The schema ΣR = ΣT and dependency information ∆R =
Ω(∆T ∪ {A}). The closure Ω is defined as follows:

Definition 4: Given a set system {S1, S2, . . . , Sm}
representing a hyper-graph, the closure Ω({S1, S2, . . . , Sm})
produces a set system {S′

1, S
′
2, . . . , S

′
m′} such that

S′
1, S

′
2, . . . , S

′
m′ represent the hyper-graph produced by

merging all the connected components of {S1, S2, . . . , Sm}.
To illustrate, if ∆T = {{a, b}, {c, d}, {e, f}} and

A = {b, c, g} (g is certain), then Ω(∆T ∪ {A}) =
{{a, b, c, d, g}, {e, f}}. Note that the sets {a, b} and {c, d}
were merged due to the condition on A. The dependency set
{e, f} was not affected as it is disjoint from A. Note that some
of the certain attributes in T may become uncertain in R.

Let us assume that a tuple t ∈ T maps to a tuple t′ ∈ R
(i.e. t → t′). For all the certain attributes aj in R, we have
t′.aj = t.aj (i.e., they are copied over). For the dependency
sets that were disjoint from A, we do not need to do anything
special. For the merged sets, we need to evaluate the resulting
pdf. Thus, for ∀Sk ∈ ∆R, we have the following cases:

Case 2(a) (A∩Sk = φ): This is the case when Sk does not
share any attributes with the selection set A, and thus using
Definition 4 and the fact that all Si ∈ ∆T are disjoint, we can

see that Sk is derived from exactly one attribute set Si ∈ ∆T ,
i.e. ft′(Sk) = ft(Si).

Case 2(b) (A∩Sk &= φ): Using Definition 4 it is easy to see
that (A ⊆ Sk). In this case, Sk can be potentially derived from
multiple attribute sets Si ∈ ∆T . These attribute sets Si are the
sets for which (A ∩ Si &= φ). Let us assume fi, 1 ≤ i ≤ n
are their respective pdfs. Sk consists of all the attributes in
such sets Si and A. Let us assume that C is set of all certain
attributes (C ⊂ A) and c is the value of C in t. We define
the identify pdf f0 over C as f0(c) = 1 and 0 otherwise.
Now, we can derive the resulting pdf of Sk by performing a
product operation over f0, f1, . . . , fm and flooring the
resulting pdf in the region where Θ(A) is false. If the pdf of
Sk is completely floored (i.e. the resulting probability of the
tuple becomes 0), we remove that tuple from the result.

Similar to the previous case, the histories of the new
dependency sets are updated to the combined histories of sets
from which they are derived i.e. ∀t′ ∈ R and ∀Sk ∈ ∆R

where t → t′, we have:

Λ(t′.Sk) =
⋃

∀Si⊆Sk,Si∈∆T

Λ(t.Si)

Consider the example shown in Table II. The probabilistic
schema of that relation in our model would be represented
as Σ = (a : int, b : int) and ∆ = {{a}, {b}}. There are
two tuples t1 and t2 in that relation with pdfs ft1({a}) =
Discrete(0 : 0.1, 1 : 0.9) and ft1({b}) = Discrete(1 :
0.6, 2 : 0.4) (this notation represents a discrete pdf, whose
parameters xi : yi denote the probability yi for value xi). Sim-
ilarly, we can write the pdfs of t2 as ft2({a}) = Discrete(7 :
1.0) and ft2({b}) = Discrete(3 : 1.0). Applying a selection
predicate σa<b results in a table with schema Σ = (a : int, b :
int) and ∆ = {{a, b}}. This table consists of a single tuple
t′ with the joint distribution ft′({a, b}) = Discrete({0, 1} :
0.06, {0, 2} : 0.04, {1, 2} : 0.36). The history Λ(t′.{a, b}) =
{t1.{a}, t1.{b}}.

Theorem 1: The new pdf generated by selection operation
is consistent with PWS.

Proof: This follows from PWS consistency for the
operators product and floor. The product operation on
contributing pdfs results in a joint pdf which is consistent
with the PWS semantics for all the non-zero values of the
new pdf. Now, the various selection criteria can be considered
as multiple applications of the floor operation which set the
pdf to zero for all possible worlds where the corresponding
attribute values do not pass the selection criteria. In these
possible worlds, the tuple containing this pdf will not exist.
Since operation floor can be applied in any order, one does
not need to re-apply selection criteria which were already
captured by some dependency set Si.

D. Joins
The join of two tables T1 !Θ(A) T2 can be written as

σΘ(A)(T1 × T2). Thus, to define the semantics of joins, we
can use the semantics of selection and cross-product. We have
already seen selection, the cross-product R = T1 × T2 is

T

Ta Tb

T1 (Incorrect!) T2 (Correct)

project(a)

join

t1
t2

ta1
ta2

tb1

t'1
t'2

project(b)
select(b>4)

a b
Discrete({4,5}:0.9, {2,3}:0.1)

Discrete({7,3}:0.7)

b
Discrete(5:0.9)

a
Discrete(4:0.9, 2:0.1)

Discrete(7:0.7)

a b
Discrete({4,5}:0.81, {2,5}:0.09)

Discrete({7,5}:0.63)

a b
Discrete({4,5}:0.9)

Discrete({7,5}:0.63)

Fig. 3. Example illustrating histories

defined as follows. ΣR = ΣT1 ∪ ΣT2 and ∆R = ∆T1 ∪ ∆T2 .
Let us assume a tuple t ∈ R is derived from tuples t1 ∈ T1 and
t2 ∈ T2 (i.e. (t1, t2) → t). ∀Sk ∈ ∆R and the corresponding
Si ∈ ∆Tc , c = 1 or 2 we have, ft(Sk) = ftc(Si). Similarly,
the history is also copied over for the new sets, Λ(t′.Sk) =
Λ(tc.Si).

Thus, conceptually joins are an application of cross-product
followed by selection (as defined in Section III-C). The tuples
that are produced as a result of join may contain some
dependencies (implied by history Λ) which are not captured
by the attribute dependencies (implied by ∆T). We can, in
principle, apply the algorithm explained in Section III-C to
collapse the intra-tuple dependencies implied by Λ into ∆T .
This decision will not affect the correctness or the semantics of
the operations defined in this section but will have a significant
effect on performance. The definition of the operations in
this section assumes a lazy merging of dependencies and
evaluation of joint pdfs. In practice, a combination of these
techniques can be used to improve performance. Thus, the
decision of whether to merge the intra-tuple dependencies
eagerly or lazily is left to the implementation.

Consider as an example, a table T with ΣT = (a :
int, b : int) and ∆T = {{a, b}} as shown in Figure 3. We
perform operations Πa(T) and Πb(σb>4(T)) to obtain the
tables Ta and Tb (In this example, we do not need to keep
the projected out attributes, as both the attributes a and b
functionally determine each other in both the tuples). Clearly,
ΣTa = (a : int) and ∆Ta = {{a}} for Ta; and ΣTb = (b : int)
and ∆Tb = {{b}} for Tb. Now, if we join Ta and Tb without
considering historical dependencies we would get an incorrect
result T1. The tuple (2, 5) in t′1 can never exist because it
do not exist in any possible world corresponding to table T .
Similarly, the probability of tuple (4, 5) in T1 is incorrect as
the pdfs of ta1 and tb1 share common ancestor t1.{a, b} and
thus the two events cannot be considered independent. Our
model detects the historical dependency between tuples ta1

and tb1 and uses that information to correctly calculate the
distribution of tuple t′1 in the final table T2 by considering the
joint distribution of attributes a and b in T . In addition, as
part of the tuple value (2, 3) (∈ T) was floored in table Tb,
we correctly floored that value in the distribution of t′1.{a, b}.

The correctness of the project and join operations with
respect to the possible world semantics follows from the
correctness of the selection operation and are thus omitted.
Given the definition and the correctness of the selection,
project, and join operations, we obtain the following theorem.

Theorem 2: Our model is closed under selection, projec-
tion, and join operations.

E. Operations on Probability Values
We also allow queries based on the probability values of the

tuples in our model. One example of such queries are threshold
queries. Given a table T with probabilistic schema (ΣT , ∆T),
a threshold query R = σPr(A)>p(T), where A ⊆ ΣT and p is
the probability threshold, returns all tuples whose probability
over the attribute set A is greater than p. As the operations
on probability values act on the probabilistic model instead
of a possible world, the possible worlds semantics described
in Section I is not be used to define the semantics of these
operations.

In general, consider the boolean predicate given by Θ(S),
where S = {Pr(s1), P r(s1), . . . , P r(sm)} and si ⊆ ΣT .
The result R of applying this selection on T consists of all
tuples t ∈ T such that t satisfies Θ(S). The semantics of this
operation and effect on histories is similar to Case 1 defined
in Section III-C.

IV. EXPERIMENTAL EVALUATION

We have implemented our model in Orion, a publicly
available extension to PostgreSQL that provides native support
for uncertain data [8]. This system not only allows us to
validate the accuracy of our methods in a realistic runtime
environment, it also gives additional insight into the overall
effect our techniques have on probabilistic query processing
in an industrial-strength DBMS. The following experiments
were conducted on a Sun-Blade-1000 workstation with 2 GB
RAM, running SunOS 5.8, PostgreSQL 8.2.4, and Orion 0.2.

Using a series of synthetically generated datasets, we ex-
plore the performance and accuracy of our model’s operations
over pdfs. Each dataset consists of random “sensor readings,”
using the schema Readings(rid, value). The uncertain
pdfs (e.g. reported from the sensors) are Gaussians, with their
means distributed uniformly from 0 to 100, and their standard
deviations distributed normally using µ = 2 and σ = 0.5.
We also generate numerous range queries, with midpoints
distributed uniformly between 0 and 100, but with interval
lengths distributed normally using µ = 10 and σ = 3.

For simplicity, we omit the initial results of evaluating pdfs
symbolically because they produce no approximation error and
incur negligible overhead. Instead, our results focus on the
relative performance of approximating symbolic pdfs with his-
tograms as opposed to discrete sampling. Although it’s obvious

5 10 15 20 25

0.
00

0.
02

0.
04

0.
06

Sample size

A
ve

ra
ge

 e
rro

r

Discrete
Histogram

Fig. 4. Accuracy vs Sample Size

theoretically that histograms will generally outperform discrete
representations, we wish to quantify the observed difference
of these two approximations in our actual implementation.

A. Accuracy vs Sample Size

The first experiment shows the average error when answer-
ing range queries over histogram and discrete approximations
of symbolic pdfs. We first discretize our dataset of random
Gaussian pdfs, varying the number of sample points. Figure
4 shows the average approximation error of the cdf values
returned at each sample size. The standard error over these
averages is negligible. As expected, the histogram represen-
tation outperforms the discrete, even in the worst case (not
shown). With only five sampling points, the accuracy is around
±0.01 probability mass. A discrete approximation requires
over twenty-five sampling points, which greatly increases the
size of each tuple and thus the overall I/O cost. Of course,
a symbolic representation is both ideal in storage size and
accuracy.

We also show the standard deviation of the error values
themselves, at each sample size, plotted only in the positive
direction for clarity. As expected, a discrete representation has
a considerably higher variance in approximation error than a
histogram. Sometimes the error is quite large, for example
in boundary cases when the query barely misses a discrete
point. Continuous representations (including histograms) avoid
this issue altogether because they can accurately estimate
probability mass at arbitrary points. The difference in error
is likely to be even greater in more complex pdfs.

B. Performance of Discretized PDFs

For this experiment, we compare the performance of the
aforementioned approximate representations. We fix the num-
ber of histogram bins at five and the number of discrete
sample points at twenty-five, in order to compare runtimes
at an equivalent level of accuracy. As shown in Figure 5,
discretizing the data not only takes additional processing time,

0.5 1.0 1.5 2.0 2.5 3.0

0
5

10
15

Number of tuples (M)

A
ve

ra
ge

 ru
nt

im
e

(s
)

Discrete
Histogram

Fig. 5. Performance of Discretized PDFs

1 2 3 4 5

0
10

0
20

0
30

0

Number of tuples (K)

A
ve

ra
ge

 ru
nt

im
e

(s
)

Join (with histories)
Join (w/o histories)
Project (with histories)
Project (w/o histories)

Fig. 6. Overhead of Histories

but also incurs more disk reads, yielding a steeper rise in cost.
Runtimes for the symbolic representation are just under the
five-bin histogram times, but we do not show these here since
they give an even higher level of accuracy.

C. Overhead of Histories

The final experiment shows the overall performance of the
implementation of our proposed model inside PostgreSQL.
We run two types of queries: joins over range queries (which
involve floors and products), and projections of the resulting
correlated data (triggering a collapse of the 2D pdfs). Figure
6 compares the average runtime of these queries with and
without the overhead of maintaining histories for correctness.
Note that ignoring histories will result in incorrect answers.
The overhead shown in this figure ranges between 5-20%.
Thus, although the proposed model is complex, it is efficient
to implement and we pay a small overhead for correctness.

V. RELATED WORK

Barbará et al. [12] and Dey et al. [15] proposed the first of
the probabilistic models. Building on their work, many robust
models for managing tuple uncertainty have been proposed re-
cently. A significant challenge when modeling uncertain data is
tracking arbitrary correlations both within and between tuples.
These dependencies are not only present in real-world data,
they are more commonly introduced by applying operations
to independent base data. Benjelloun et al. have proposed a
novel technique that combines uncertainty with data lineage
to solve this problem [9]. The ProbView system [16] took
a similar approach by propagating the formulas necessary to
evaluating the resulting probabilities. Sen et al. have more
recently proposed an alternative approach to represent tuple
correlations using probabilistic graphical models [14]. They
use factored representations of the relations to represent their
dependencies. Antova et al. developed a compact represen-
tation called world-set decompositions which captures the
correlations in the database by representing the finite sets of
worlds [17]. Dalvi et al. introduced safe plans [18], [10] in an
attempt to avoid probabilistic dependencies in queries.

An important area of uncertain reasoning and modeling
deals with fuzzy sets [1]. The work on fuzzy models is not
immediately related to our work as we assume a probabilistic
model.

None of the aforementioned tuple uncertainty models can
fully support continuous probability distributions. They suffer
from loss of accuracy and efficiency. Parallel to this modeling
effort, there has also been a lot of recent work on querying
and indexing pdf attributes in databases [2], [3], [4], [5], [6],
[7].

In previous work, we have proposed preliminary models for
attribute uncertainty that overcome these limitations [19], [20].
We have also studied indexing methods for attribute uncer-
tainty, both for continuous [6] and categorical [7] distributions.
Apart from our work, there has been other work by [2], [3], [5]
on indexing pdfs. However, none of this work considers PWS
and hence its appeal is limited to solving specific problems.
In this paper we have shown the first model for handling
pdfs which can pave the way for more complex and useful
operations involving pdfs.

VI. CONCLUSION

We have presented a new model for handling arbitrary
pdf (both discrete and continuous) attributes natively at the
database level. Our approach allows a more natural and
efficient representation and implementation for continuous
domains. The model can handle arbitrary intra- and inter-tuple
correlations. We show that our model is complete and closed
under the fundamental relational operations of selection, pro-
jection, and join. In our previous work we have developed
Orion – an extension of PostgreSQL that provides native
support for attribute uncertainty with procedural semantics.
We have extended Orion to support our new model. The
experiments performed in Orion show the effectiveness and
efficiency of our approach.

ACKNOWLEDGMENTS

This work was supported by NSF grants IIS 0534702, IIS
0415097, CCF 0621457, AFOSR award FA9550–06–1–0099,
ARO grant DAAD19–03–1–0321 and by the Research Grants
Council of Hong Kong CERG PolyU 5138/06E. We would
also like to thank the Trio group at Stanford University for
alerting us to an inconsistency in an earlier version of this
model.

REFERENCES

[1] J. Galindo, A. Urrutia, and M. Piattini, Fuzzy Databases: Modeling,
Design, and Implementation. Idea Group Publishing, 2006.

[2] V. Ljosa and A. Singh, “APLA: Indexing arbitrary probability dis-
tributions,” in Proceedings of 23rd International Conference on Data
Engineering (ICDE), 2007.

[3] C. Böhm, A. Pryakhin, and M. Schubert, “The gauss-tree: Efficient
object identification in databases of probabilistic feature vectors,” in
Proceedings of International Conference on Data Engineering (ICDE),
2006.

[4] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Querying imprecise
data in moving object databases,” IEEE Transactions on Knowledge and
Data Engineering, vol. 16, no. 7, 2004.

[5] A. Faradjian, J. Gehrke, and P. Bonnet, “GADT: A probability space
ADT for representing and querying physical world,” in Proceedings of
International Conference on Data Engineering (ICDE), 2002.

[6] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter, “Efficient
indexing methods for probabilistic threshold queries over uncertain
data,” in Proceedings of International Conference on Very Large Data
Bases (VLDB), 2004.

[7] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. Hambrusch, “In-
dexing uncertain categorical data,” in Proceedings of 23rd International
Conference on Data Engineering (ICDE), 2007.

[8] “http://orion.cs.purdue.edu/,” 2006.
[9] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom, “ULDBs:

Databases with Uncertainty and Lineage,” in Proceedings of the 32nd
International Conference on Very Large Data Bases, 2006, pp. 953–964.

[10] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and D. Suciu,
“MYSTIQ: a system for finding more answers by using probabilities,”
in Proceedings of ACM Special Interest Group on Management Of Data,
2005.

[11] A. Deshpande and S. Madden, “MauveDB: supporting model-based user
views in database systems,” in Proceedings of ACM Special Interest
Group on Management Of Data, 2006, pp. 73–84.

[12] D. Barbará, H. Garcia-Molina, and D. Porter, “The management of prob-
abilistic data,” IEEE Transactions on Knowledge and Data Engineering,
vol. 4, no. 5, pp. 487–502, 1992.

[13] J. Y. Halpern, Reasoning about Uncertainty. The MIT Press, 2003.
[14] P. Sen and A. Deshpande, “Representing and querying correlated tu-

ples in probabilistic databases,” in Proceedings of 23rd International
Conference on Data Engineering (ICDE), 2007.

[15] D. Dey and S. Sarkar, “A probabilistic relational model and algebra,”
ACM Transactions of Database Systems, vol. 21, no. 3, pp. 339–369,
1996.

[16] L. Lakshmanan, N. Leone, R. Ross, and V. Subrahmanina, “Probview: A
flexible probabilistic database system,” ACM Transactions on Database
Systems, vol. 22, no. 3, pp. 419–469, 1997.

[17] L. Antova, C. Koch, and D. Olteanu, “10ˆ10ˆ6 worlds and beyond:
Efficient representation and processing of incomplete information,” in
Proceedings of 23rd International Conference on Data Engineering
(ICDE), 2007.

[18] N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic
databases,” in Proceedings of International Conference on Very Large
Data Bases (VLDB), 2004.

[19] R. Cheng, S. Singh, and Prabhakar, “U-DBMS: A database system
for managing constantly-evolving data,” in Proceedings of Very Large
Databases Conference (VLDB), 2005.

[20] R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. Vitter, and Y. Xia,
“Efficient join processing over uncertain data,” in Proceedings of ACM
15th Conference on Information and Knowledge Management (CIKM),
2006.

