Intrusion Fault-Tolerance using Threshold Cryptography

Rahim Sewani Sarvjeet Singh Abhilasha Bhargav

Outline

- Introduction
- Motivation
- Threshold Cryptography Basics
- Threshold Cryptography Functionality
- Library Demo
- Analysis
- Achievements

Introduction

- Goal To develop an intrusion fault-tolerant group communication system using threshold cryptography to exchange messages
- TCP-IP supports point to point communication

Need multi-point to multi-point communication – "Group Communication"

Motivation

- Spread Provides group communication with reliability and availability in presence of network partitions or component failures
- Server:
 - Receives, processes and forwards messages
 - Needs location of all potential spread servers
 - Exchanges messages to generate a consistent view of the system
- Client:
 - The group members that communicate with the server to send and receive messages

Motivation...

- How to achieve authenticated group communication in Spread?
- Adversary tries to disrupt the consistent view of the system
- Two extremes of agreement
 - Trust everyone
 - □ Trust no one
- Servers can trust their own subnet

- Servers trust a threshold of servers belonging to another subnet
- Proposed Solution: Integrating Threshold Signature Library into the servers

Motivation...

 Did not find any open source Threshold
Signatures toolkit

RSA Basics

- Public key = (n,e) ; Secret Key = d
- Signature: S = M^d mod n
- Verification: S^e mod n = M ?

Threshold RSA distributes secret amongst all members

Threshold Cryptography

- Allows n parties to share the ability of performing a cryptographic operation (e.g. creating a digital signature)
- Any t parties (t < n) can perform this operation jointly</p>
- Infeasible for any t -1 parties (or less) to do so, even by collusion
- The secret cannot be recovered by any subset of parties

Threshold Signature Library Demo

Threshold Cryptography Implementation

- Implemented signature protocol as described in Victor Shoup "Practical Threshold Signature" paper
- Uses OpenSSL Crypto library
- Generic

- No assumption about the underlying platform
- No assumption about the underlying communication mechanism

Analysis of TC-RSA with RSA

	TC-RSA	RSA
Size of the signature	O(1)	O(k) k = Threshold
Generate Ind. Signatures	O(k)	O(k)
Merging Signatures	O(k)	0 (N/A)
Signature Verification	O(1)	O(k)

Analysis of TC-RSA with RSA

Analysis of TC-RSA with RSA

Setup cost (PKI):

TC-RSA	RSA	
Requires one certificate for the public key per	Requires n certificates for all	
group	group members	

Accomplished Work

- Researching and understanding current state of work in group communication protocols and threshold cryptography
- Understanding the Spread architecture and the interaction between its modules
- Implementing and testing the Threshold Cryptography library
- Threat and run time and complexity analysis of threshold signatures

Future Work

Integrating the threshold signatures in the Spread communication system

Testing and analyzing the performance of the code implemented

Questions

Acknowledgement

Professor Cristina Nita-Rotaru and CS590D students for insight and helpful suggestions