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ABSTRACT
The probabilistic threshold query (PTQ) is one of the most com-
mon queries in uncertain databases, where all results satisfying the
query with probabilities that meet the threshold requirement are
returned. PTQ is used widely in nearest-neighbor queries, range
queries, ranking queries, etc. In this paper, we investigate the gen-
eral PTQ for arbitrary SQL queries that involve selections, pro-
jections and joins. The uncertain database model that we use is
one that combines both attribute and tuple uncertainty as well as
correlations between arbitrary attribute sets. We address the PTQ
optimization problem that aims at improving the efficiency of PTQ
query execution by enabling alternative query plan enumeration for
optimization. We propose general optimization rules as well as
rules specifically for selections, projections and joins. We intro-
duce a threshold operator (τ -operator) to the query plan and show
it is generally desirable to push down the τ -operator as much as
possible. Our PTQ optimizations are evaluated in a real uncertain
database management system. Our experiments on both real and
synthetic data sets show that the optimizations improve the PTQ
query processing time.
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1. INTRODUCTION
Due to the importance of uncertain data for a large number of

applications, there has been significant recent interest in database
support for uncertain data. Existing work in this area includes new
models for uncertain data, prototype implementations, and efficient
query processing algorithms. In order to provide meaningful se-
mantics for queries over uncertain data, a large body of recent work
has adopted the well-known Possible Worlds Semantics [10] (PWS)
over probabilistic data. As with traditional data, efficient execution
is necessary for ensuring the viability of uncertain data manage-
ment systems. In fact, due to the complications of ensuring correct
results (with respect to PWS), and the need for CPU-intensive op-
erations over probability distributions, it is even more critical and
challenging for uncertain data.

Existing work on query processing over uncertain data can be
divided into two broad categories. The first is concerned with the
correct evaluation of probabilities in accordance with PWS. These
issues were first highlighted in [10] and have been addressed by
most models proposed for uncertain data [2, 14, 23, 22]. This cat-
egory of work is focused on correctness rather than efficiency of
evaluation. Dalvi et. al demonstrated that evaluation plans that are
correct for a given query for the standard relational model, may
yield incorrect results for uncertain data (in particular, the proba-
bility values may be incorrect). They showed how “safe” plans can
be generated for many, but not all queries. While these plans guar-
antee correct results, they may not necessarily be the most efficient.
Most other work on uncertain query evaluation has endeavored to
ensure correctness of query results by directly taking dependencies
between data into account in the evaluation of query results using
lineage [2], factor tables [22], world tables [14], or history [23].
These approaches also focus on correct evaluation without directly
considering efficiency. Their advantage over the approach of [10]
is that they always compute the correct result and are not limited to
queries for which safe plans can be identified.

A number of works have addressed efficient evaluation for a sin-
gle special type of query at a time, e.g., ranking [24, 13, 9], range
[8], nearest-neighbors [6, 3], joins [7], and skyline queries [20, 29].
Most of these works leverage a probability threshold for efficient
evaluation. However, they are limited to a single query and do
not address complex query optimization (such as an arbitrary SQL
query). On the other hand, recent work [18, 19] aims at optimizing
some SQL queries, with a focus on efficient computation of exact
and approximate confidences.

In this paper we address the important problem of optimizing
arbitrary threshold select-project-join (SPJ) queries over uncertain
data. Threshold queries represent an important class of queries over
uncertain data [8] that return only those query results whose prob-
abilities exceed a given threshold. Threshold queries are useful



for many applications where results with low probabilities are less
relevant. For example, the probability of a result is indicative of
our confidence in the result being true [10]. Thus low probability
results are not of interest in many instances. To the best of our
knowledge, this is the first work to address the issues of general
threshold query optimization. The results are applicable to a broad
range of uncertainty models with both discrete and continuous un-
certain data.

The current approach to evaluating a general threshold SPJ query
is to evaluate the query correctly and then discard those tuples that
do not satisfy the threshold probability. This approach misses out
on a significant optimization opportunity, similar to the “pushing
selections, projections early” heuristic commonly used in databases.
It may be the case that a large number of tuples that are produced
by the query do not meet the threshold and are thus thrown out. The
following important question remains unanswered: Is it possible to
avoid spending resources on computing these “useless” tuples?

One of the major challenges in answering threshold queries is
ensuring the correctness of query results. Due to the probabilis-
tic nature of the data, results (and base data items too) often have
correlations and dependencies that must not be ignored in order to
ensure correct computation of result probabilities. Consequently,
the question of how a threshold query for uncertain data can be op-
timized is not obvious. In this paper, we show how to leverage the
threshold for efficient query execution over an arbitrary query plan
while ensuring correct evaluation.

With the aim of being as general as possible, we have chosen to
use the Orion uncertain data model proposed in [23] since it encom-
passes the other recent models (such as Trio [2], MayBMS [14],
and MystiQ [5]) while having the advantage of handling continuous
data as well as the capability of handling both tuple uncertainty and
attribute uncertainty. Furthermore, the model, especially the use of
history (introduced in Section 2.2), ensures that the dependencies
and correlations are captured after each query operation such that
confidence can be computed correctly for the query results. In ad-
dition, since this model has been implemented inside the DBMS
(PostgreSQL [23]), it allows us to use our optimization in a real
prototype and validate our claims of efficient query execution in a
realistic system.

The key contributions of this paper are as follows:

1. We formalize the notion of threshold queries using a new
threshold operator, τθ , as an addition to the set of standard
relational algebra operators.

2. We establish query equivalences involving the threshold op-
erator, and prove their correctness with respect to PWS over
uncertain data. The optimization rules that we design are
general enough to handle uncertain data with both discrete
and continuous uncertainty and allow the uncertain data to
have arbitrary dependencies. These equivalences are very
similar to the standard equivalences used for regular rela-
tional query optimization. Thus they can easily be incorpo-
rated into existing query optimizers. The contribution of this
paper lies in establishing the correctness of the equivalences
that enables their use for optimization.

3. We experimentally validate (using real and synthetic data)
the effectiveness of our optimization rules.

As with the Orion model [23], in this paper we do not handle
duplicate elimination or set operations. Since the uncertain model
allows continuous data with attribute uncertainty, the semantics of
duplicates in this case is not clear. However, we could simplify our
model to only handle discrete uncertainty as in [11, 21, 14] and

support duplicate elimination under Orion. This is out of the scope
of our current paper, and is left for future work.

The rest of this paper is organized as follows: Section 2 formally
defines the probabilistic threshold query (PTQ) as well as the op-
timization problem; Section 3 presents general optimization rules
that we propose for pruning during the PTQ execution, along with
specific optimization rules for selection, projection and Cartesian
product. We discuss how to use these optimization rules in PTQ
query evaluation in Section 4 with an example. We present our ex-
perimental results in Section 5 on both synthetic and real data sets.
The related work is given in Section 6. We conclude our paper and
point out the future work in Section 7.

2. PROBLEM DEFINITION
We begin with running examples to illustrate the uncertain data

model used in this paper [23], followed by a review of the data
model, which supports probabilistic attributes and tuples with cor-
relations. In the remainder of this paper, unless otherwise specified,
the term “model” will refer to the Orion model introduced in [23].
We then formally define the probabilistic threshold queries and in-
troduce the threshold operator. We finally state the goal for PTQ
optimization considered in this paper.

2.1 Running Examples
Uncertain data is common in many applications such as sensor

networks, data integration, location-based applications, etc. We
present one example application of uncertain data below that we
will revisit later, followed by a query on uncertain tables that serves
as a running example throughout this paper.

EXAMPLE 2.1. Consider an application where the speed of cars
on a highway is monitored. Due to errors in measurement, the
speed sensors report a range over which the actual speed is uni-
formly distributed. Based on the engine noise, the make and model
of the car are inferred by classification programs. Often these in-
ferences are only able to narrow down the make and model to a
few options with associated confidences. For example, for a given
vehicle, the make and model may be either Honda Civic, or Toyota
Corolla. Note that these two fields are jointly distributed, i.e., we
cannot have arbitrary combinations like Honda Corolla. This in-
formation is to be stored in a database with the following attributes:
Highway, speed, Make, and Model. Table 1 shows the speed in-
formation for three cars stored using the Orion uncertainty model
which is discussed below.

EXAMPLE 2.2. As a second, independent example, consider a
relation R, with four discrete uncertain attributes A,B,C and D,
as shown in Figure 1. Attributes A and B are jointly distributed,
as are C and D. Each pair may represent, for example, two lo-
cation coordinates, or values reported by different individuals or
sensors. The example shows two tuples in R. The uncertainty in
the first tuple is as follows: the values of A and B are either 4
and 7, respectively, with probability 0.9, or 2 and 6, respectively
with probability 0.1; the values of C and D are either 2 and 3 with
probability 0.3, or 5 and 4 with probability 0.7. The uncertainty
in the second tuple is similar. Table R1 and R2 are derived from
R as follows: R1 = πA,C(σA<5R), R2 = πB,D(σB<7R). The
following query is performed over R1 and R2:

πR1.C((σR1.C<3(R1)) ./R1.A<R2.B (R2))

as shown in Figure 1 along with all intermediate results during the
query evaluation. We explain below how this query is evaluated
under the Orion model.
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Figure 1: Running example (the tables and the query)
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Figure 2: PTQ plan on the
running example

Highway Speed (mph) Make Model

101 Uniform(65, 75) (‘Honda’, ‘Civic’): 0.4
(‘Toyota’, ‘Corolla’): 0.2

101 Uniform(65, 80) (‘BMW’, ‘Z4’): 0.3
(‘Ford’, ‘Mustang’): 0.3

99 Uniform(55, 70) (‘Hyundai’, ‘Elantra’): 0.2
(‘Toyota’, ‘Camry’): 0.5

Table 1: Car speed on highways

2.2 Uncertain Database Model
In this section, we briefly describe the nature of the Orion model

as it is central to the contribution of this paper. Under this model,
uncertainty is represented directly in a tuple using discrete and con-
tinuous probability density functions (pdfs). Correlations are cap-
tured in terms of joint distributions. A key aspect of the model
is that it does not enumerate all possible values for an uncertain
attribute or tuple (as is the case for other leading models). This
enables the model to directly capture infinite possibilities (e.g., a
Gaussian probability distribution) without necessarily resorting to
an approximate representation. Additionally, this representation
does not introduce any “holes” in the representation of a contin-
uous attribute.

Under the Orion model, an uncertain relation T is represented
using a probabilistic schema, (ΣT ,∆T ). ΣT is the normal rela-
tional schema (attribute names and domain types). The set of pos-
sible domains is expanded to include new data types. These data
types represent continuous uncertainty (either as a symbolic repre-
sentation such as a Gaussian, or a histogram), ordered discrete (e.g.,
integer values) and categorical or unordered discrete (e.g., colors).
∆T captures dependency information. It is a partitioning of the
uncertain attributes of T . Each partition, called a dependency set,
declares that the attributes in that partition are jointly distributed
(i.e., correlated). An uncertain attribute that is independent from
all the other attributes forms its own singleton dependency set. For
our car example in Table 1, ∆T = {{Speed}, {Make,Model}}.
Similarly, for our running example in Figure 1, relationR’s schema
defines the following dependency information: ∆R = {S1, S2}
where S1 = {A,B} and S2 = {C,D}.

In the standard relational model, a tuple is a collection of ex-
act values (one for each attribute in the schema). Under the Orion
model, a tuple is a collection of exact values (one for each certain
attribute, if any) and probability distributions (one for each depen-
dency set, if any). For example, the first tuple in Table 1 consists of

one certain value 101 for Highway, and two pdfs: Uniform(65,75)
for Speed, and { (‘Honda’, ‘Civic’):0.4, (‘Toyota’, ‘Co-rolla’):0.2
} for {Make,Model}. This tuple represents a car on Highway
101 traveling with a speed that is uniformly distributed between 65
and 75 mph and is either a Honda Civic with probability 0.4, or a
Toyota Corolla with probability 0.2.

From this example we can see that the model allows for missing
probabilities – i.e., the sum of probability values for any distribu-
tion can be less than 1 indicating partial probability distributions1.

In general each pdf may be multi-dimensional over any combi-
nation of uncertain domains. Given an uncertain relation R, a set
of attributes S from R and a tuple t ∈ R, we define the probability
of attributes S in t (denoted as Pr(t.S)) as the cumulative prob-
ability mass over the joint pdf of all pdfs in t.S. When it is clear
from the context that S is associated with t, we also write Pr(t.S)
as Pr(S). The overall (tuple) probability of the tuple t, denoted as
Pr(t), is defined as the product of the cumulative probability mass
of each of its dependency sets, i.e. Pr(t) =

Q
S∈∆T

Pr(t.S)
(here S is a dependency set in t). Thus, for Tuple 1 in Table 1, the
overall tuple probability is 1× 0.6 = 0.6.

In addition to representation, a model must specify how queries
are processed correctly (with respect to PWS). The major challenge
for correct evaluation of probabilities is caused by dependencies
among derived data [22]. The model explicitly tracks the original
pdf from which each resulting pdf in a result tuple is derived. Thus
for each tuple, the model stores a history Λ that handles inter-tuple
dependencies that result from prior database operations. History
captures dependencies between dependency sets of tuples. The
function Λ maps each pdf of a dependency set t.S in tuple t, to
a set of pdfs that are its ancestors, i.e., from which the pdf of t.S
is derived. Only the top-level ancestors are stored, i.e., the base
pdfs inserted in the database by the user (base tuples are assumed
to be independent from each other). Two pdfs are called histori-
cally independent if their histories do not overlap, otherwise they
are historically dependent.

To achieve correct evaluation, the model converts relational op-
erations over uncertain attributes into operations over probability
distributions. Three simple operations are defined and shown to be
sufficient to support general SPJ queries: floor, marginalize
and product.
floor(f, I) takes an input pdf f and reduces the probability to

zero over all points in region I . It produces a partial pdf f ′ such that
values of f ′(x) = 0 whenever x ∈ I and f ′(x) = f(x) otherwise.

1Note that NULL values belong to each domain and can also be
associated with a probability value in any pdf.



This floor operation corresponds to a selection predicate. The
values in I are those which do not pass the selection criteria and
hence do not exist in the resulting pdf. Multiple floor operations
can be successively applied over a pdf in any order and the result
would be floor(f, I1∪...Ik) regardless of the order in which they
are applied. Consider for example the derivation of R′1 from R1 as
shown in Figure 1. The query corresponds to applying a floor for
the regionC ≥ 3. Since this applies only to the second dependency
set, only the pdf for this dependency set is affected. Thus the first
tuple in R1 results in the first tuple in R′1 where the pdf for C is
floored whenever C ≥ 3. Similarly, the second tuple of R1 results
in the second tuple of R′1. The schema of the resulting relation is
the same as that of the input relation. The history of each resulting
dependency set is equal to the corresponding source dependency
set of R.
marginalize(f, Ā) – produces the marginalized pdf f ′ for a

set of attributes Ā given their joint pdf f with other attributes. Let
Āf be the set of attributes whose pdf is f . Then Ā ⊆ Āf . We
compute f ′ as

R
Āf−Ā

f . For discrete distributions, the integral is
replaced by sum. The marginalization corresponds to a projection
operation wherein a number of attributes are projected out. An
important point to note is that the overall tuple probability does
not change after marginalization. In Figure 1, R3 is the result of a
projection over R12.
product(f1, f2) – returns the joint pdf f (over attribute set

S = S1 × S2) for two individual pdfs f1 and f2 (over S1 and
S2 respectively). Two cases need to be considered. If f1 and f2 are
historically independent, we can simply compute the joint pdf as
the usual product: f(x) = f1(x1)f2(x2) where x ∈ S1 × S2 and
x = (x1, x2). If they are historically dependent, it is incorrect to
simply take the product of the two. In this situation, we first divide
the attributes in S1 and S2 into three sets: i) Cj – the set of at-
tributes that the common ancestors of S1 and S2 share with S1 and
S2; ii) D1 are those attributes of S1 that are not in Cj ; and iii) D2

are those attributes of S2 that are not in Cj . Identification of these
sets is easily done by examining the history of S1 and S2. These
three sets are independent of each other and we can use them to
derive the distribution of S correctly while taking the dependencies
into account. To do this, we first compute their product and then
apply any floor operations that were applied to derive the attribute
sets in either S1 or S2 from Cj .

Product operations are essential for cross products and also for
selection conditions that have predicates that go across multiple de-
pendency sets. In Figure 1,R12 is derived fromR′1 andR2 by com-
puting their product and then applying a floor. When computing the
product, the joint distribution for the resulting tuples must first con-
sider their dependencies. Thus, the last tuple in R12 is not simply
the concatenation of the last two tuples of R′1 and R2 since they
are historically dependent as determined from their history edges
that point to the same base pdfs inR (only a couple of these history
edges are shown for clarity). Thus instead of a simple product of
the pdfs in R′1 and R2, we have to obtain the pdfs from the second
tuple pdf in R, apply all the floors that were applied to get to R′1
and R2 (i.e., for selections A < 5, B < 7 and C < 3). This yields
the product distribution. Floors corresponding to A < B are then
applied to this tuple to yield the tuple seen in Table R12. In this ex-
ample, C1 = {A,B} and C2 = {C,D}, and both D1 and D2 are
empty as there are no attributes in R′1 or R2 that are independent
of this common ancestor.

2.3 Threshold Query Optimization

DEFINITION 1. (The Probabilistic Threshold Query (PTQ)) Given

Notation Meaning
θ, τθ probability threshold, threshold operator
c selection predicate
ΣT probabilistic schema of table T
∆T dependency sets of table T
t.S an attribute value set S in tuple t
Pr(t.S) probability mass over pdf defined on t.S,

also written as Pr(S) if t is clear from context
Λ(t.S) history of t.S
t′ a tuple in the query result that originates from t
A/U attribute/uncertain attribute

Table 2: Summary of main notations

a probability threshold θ, and a regular query, a PTQ returns all
tuples satisfying the query with tuple probabilities greater than or
equal to θ.

EXAMPLE 2.3. In Example 2.1, suppose the speed limit on High-
way 101 is 70 miles per hour (mph), the local police want to find
all speeding cars with probability at least 0.4. This is a PTQ where
θ = 0.4. To answer the query, we first find out all cars on High-
way 101: Tuple 1 and Tuple 2, then compute their tuple prob-
abilities after the selection ‘Speed > 70’ is performed, which
are 0.5*0.6=0.3 and 2/3*0.6=0.4, respectively. Note that the tu-
ple probability is computed from the two dependency sets ({Speed},
{Make, Model}) after the selection on Speed “floors” out part of
the uniform distribution where Speed ≤ 70. The result of this PTQ
is Tuple 2.

In this example, we take a two-stage approach for the PTQ ex-
ecution: First we obtain the tuples satisfying the query (Tuple 1
and 2), then among the resulting tuples, we choose those whose
probabilities meet the threshold (Tuple 2). We call the first stage
“evaluation stage” and the second “pruning stage”. However, for
complicated queries, this direct approach can be very inefficient.
As with other query operators (e.g., selection, projection), we could
perform significantly better if we could prune out tuples at early
stages of the query evaluation based upon the probability threshold
operator. This can be especially beneficial for uncertain data for
which probability computations can be CPU-intensive.

Our solution is to treat the threshold as a regular algebra operator
and study its relationship to the standard operators (viz. selection,
project, and join). The goal is to identify equivalences involving
this new operator that allow us to enumerate alternative plans that
are guaranteed to give the same results for uncertain data as a start-
ing plan. This is exactly how regular queries are optimized. As a
first step, we introduce the threshold operator:

DEFINITION 2. (The Threshold Operator) The threshold oper-
ator τθ when applied on an input relation, only retains those tuples
with tuple probabilities greater than or equal to the threshold θ.
Formally, we have τθ(R) = {t|t ∈ R ∧ Pr(t) ≥ θ}, where t is a
tuple and R is a relation.

We can apply the threshold operator after selections, projections,
and Cartesian products on uncertain relations as follows (let t′ be a
tuple in the resulting table):

τθ(σc(R)) = {t′|t′ ∈ σc(R) ∧ Pr(t′) ≥ θ}
τθ(πĀ(R)) = {t′|t′ ∈ πĀ(R) ∧ Pr(t′) ≥ θ}
τθ(R1 ×R2) = {t′|t′ ∈ R1 ×R2 ∧ Pr(t′) ≥ θ}

where c is the selection predicate (i.e., condition), Ā is a set of
attributes in R, and R1 and R2 are two relations.



In this paper we are interested in identifying equivalences among
the standard algebra operators and the new threshold operator τθ .
The goal is to enable enumeration of alternative plans that can be
exploited by an optimizer. The key idea is that pushing the τθ op-
erator earlier in a plan could potentially result in a more efficient
plan by reducing the number of tuples that need to be evaluated.

The query plan can be viewed as a tree with the root being the
last operation to perform. The threshold operator τθ sits at the root
to filter out results that satisfy the query but do not meet the thresh-
old requirement. This is illustrated in Figure 2, which is the PTQ
version of our running example (see Example 2.2). We can think of
the PTQ optimization process as one that “trickles down” τθ along
the tree so that unqualified tuples are pruned earlier at lower levels
of the query plan tree.

EXAMPLE 2.4. As seen in Example 2.2, the original query in
Figure 1 before applying any threshold operators can be defined as

πR1.C((σR1.C<3(R1)) ./R1.A<R2.B (R2))

Its PTQ version is to return all tuples with probabilities at least θ
after the original query is executed. Notice that if we can place the
threshold operator before the join and successfully prune tuples
from either R1 or R2, the expensive join execution will be much
more efficient since there are less tuples to evaluate for the join
predicate. We will later prove that such pruning does not prune
away any potential result and will come back to the example for a
more detailed discussion in Section 3.

In summary, the task of the PTQ optimization is to decide where
to put τθ in the query plan to preserve the correctness of the query
result while maximizing the pruning of unqualified tuples. Before
considering complex queries with multiple operators, we first study
the optimization problem for individual operators in Section 3. The
main notations used in our paper are summarized in Table 2.

3. OPTIMIZATION RULES
In this section, we give the optimization rules for PTQ based on

selection (σ), projection (π), Cartesian product (×) and join (./).
The idea is to perform the threshold pruning at earlier stages during
the query execution so that tuples that cannot meet the threshold
can be discarded without further evaluation. Note that among the
five basic operations for relational algebra, we only discuss three
in this paper (selection, projection and Cartesian product), because
the set difference and union require a clear definition for equality
of two tuples with uncertain attributes, which is beyond the scope
of this paper and is left for future work.

3.1 General Rules
We first give general optimization rules for threshold queries and

their correctness proofs, from which specific optimization rules for
query operators can be deduced.

Optimization Rule 1. τθ(op(R)) = τθ(op(τθ(R))), where
op stands for an operator (σ or π), i.e., we can apply the thresh-
old operator to the relation R first to filter out tuples with a tuple
probability less than θ before evaluating op.

PROOF. Let t be a tuple in R and Pr(t) be the tuple probability
of t. Let t′ = op(t). For t′ to be a tuple in the PTQ result, the
tuple probability Pr(t′) after evaluating the operator must be at
least θ. Since Pr(t′) ≤ Pr(t), we can prune t immediately if
Pr(t) < θ.

When executing a PTQ with threshold θ, we can first apply τθ
to R, thus saving efforts to evaluate the query operator for tuples

whose probabilities are already below θ. The efficiency can be sig-
nificantly improved especially when the query operator is expen-
sive to perform (e.g. selection with a complex predicate).

EXAMPLE 3.1. In Table 1 (call it R), suppose we want to find
all Toyotas driving at a speed over 70 mph with probability at least
0.7. This PTQ can be written as: τ0.7(σSpeed>70∧Make=‘Toyota′R).
With Optimization Rule 1, we can immediately prune the first two
tuples without evaluating the selection predicates, as their tuple
probabilities (both 0.6) are already below the threshold.

To further improve the efficiency of executing threshold queries,
we can leverage the indexing techniques. For example, a B-tree
built on the tuple probabilities can facilitate the inner threshold
pruning on the original relation R to avoid sequential scanning of
all tuples, which brings down the complexity of pruning based on
Optimization Rule 1 from O(n) to O(logn), where n is the num-
ber of tuples in R. However, the index structure must be updated
whenever there are deletions and insertions of tuples. Furthermore,
the index must also be updated whenever the probabilities of un-
certain attributes change.

Next we introduce a theorem upon which many of our optimiza-
tion rules are built. It lays a solid foundation for ensuring the cor-
rectness of many PTQ optimization rules that we present later in
the paper. It also ensures the safety to avoid tracking dependencies
between attribute sets in many cases, which greatly simplifies the
PTQ optimization for uncertain data with arbitrary correlations.

THEOREM 3.2. Given two arbitrary sets of attributes that are
disjoint, the probability of the cross product of the two sets is no
more than the probability of either set. Formally, let S1 and S2 be
two arbitrary attribute sets in tuple t1 and t2 respectively (S1 ⊆ t1,
S2 ⊆ t2, and t1 and t2 can come from different relations). Let
Pr(S1, S2) be the probability of the cross product of the two sets
and Pr(S1), Pr(S2) be the probability of S1 and S2 respectively
(see Section 2.2 for the probability definitions). Then we have:
Pr(S1, S2) ≤ min(Pr(S1), P r(S2)).

PROOF. Our proof consists of a proof forPr(S1, S2) ≤ Pr(S1)
and a proof for Pr(S1, S2) ≤ Pr(S2), from which we can deduce
that Pr(S1, S2) ≤ min(Pr(S1), P r(S2)). For simplicity of no-
tations, we write Pr(S12) instead of Pr(S1, S2) in our proof. We
only show the proof for Pr(S12) ≤ Pr(S1) below, as the proof
for Pr(S12) ≤ Pr(S2) is exactly the same. Without loss of gen-
erality, we partition Si (i ∈ {1, 2}) into two parts2:

• Historically dependent attributes: Cj , 1 ≤ j ≤ m, where
Cj = Nj ∩S12,Nj is a common ancestor of S1 and S2 (i.e.,
Nj ∈ Λ(S1) ∩ Λ(S2), the intersection of the histories of S1

and S2), and m is the number of such common ancestors.
Thus Cj is the set of attributes that the ancestor Nj shares
with either S1 or S2.

• Historically independent attributes: Di = Si −
S
Cj is the

set of attributes in Si that are not shared with any common
ancestor of S1 and S2.

Let Xt
S be the random variable for an attribute set S in t. Let xtS

be an instance of Xt
S . If t is omitted in Xt

S (i.e., XS), we mean the
random variable for the attribute set in S. Particularly, if S refers
to Cj , we interpret t.Cj as the common attribute set between tuple
t and the ancestor Cj . Let f(xtS) be the pdf of xtS , then we have:

f(xS12) =

(
0 if f(xtiSi) = 0

f(xt1D1
)f(xt2D2

)
Qm
j=1 f(xCj ) otherwise

2See Section 2.2 for definitions of historical dependency



f(xt1S1
) = f(xt1D1

)

mY
j=1

f(xt1Cj )

With the above pdf, we can compute the probability of the set
S12 and S1 respectively as follows. Note that the attribute sets D1,
D2 and Cj , ∀j are independent of each other.

Pr(S12) =

Z
f(xS12)dxS12

=

Z
f(x

ti
Si

)6=0

f(xt1D1
)f(xt2D2

)

mY
j=1

f(xCj )

=

Z
f(xt1D1

)

Z
f(xt2D2

)

mY
j=1

Z
f(xCj )

= Pr(t1.D1)Pr(t2.D2)

mY
j=1

Pr(Cj)

(1)

Note that (1) ≤ Pr(t1.D1)
Qm
j=1 Pr(Cj).

Likewise, we can compute Pr(S1) as follows:

Pr(S1) = Pr′(t1.D1)

mY
j=1

Pr′(t1.Cj)

= Pr′(t1.D1)
mY
j=1

Pr′(Cj)

(2)

Note that although t1.Cj ⊆ Cj , their total probabilities are the
same (this can be easily proved by integrating over their respective
pdfs, where f(xt1Cj ) is the marginalized pdf obtained from f(xCj )).

Comparing (1) with (2), we notice thatPr(t1.D1) ≤ Pr′(t1.D1)
andPr(Cj) ≤ Pr′(Cj) due to more floors when computingPr(S12)
than computing Pr(S1) (when computing Pr(S12), we need to
consider floors resulting from selection predicates to obtain both
S1 and S2 while we only consider floors to get S1 when com-
puting Pr(S1), i.e., the former considers either f(xt1S1

) = 0 or
f(xt2S2

) = 0 while the latter considers only f(xt1S1
) = 0), we have:

(1) ≤ Pr(t1.D1)

mY
j=1

Pr(Cj) ≤ Pr′(t1.D1)

mY
j=1

Pr′(Cj)

i.e., Pr(S12) ≤ Pr(S1).
Note: If S1 and S2 are from the same tuple (i.e., t1 = t2) and are

dependent within the tuple, we can think of their common ancestor
Nj as their dependency set in the tuple, and the rest of the proof is
the same as the above.

Theorem 3.2 empowers us to avoid tracking histories and depen-
dencies between attribute sets when pruning – we can always prune
according to either S1 or S2 regardless of whether the two sets are
correlated or how they are correlated.

EXAMPLE 3.3. As a concrete example to illustrate the use of
Theorem 3.2, let us revisit our running example in Figure 1 and 2.
We have explained how to prune intuitively in Example 2.4 without
giving the reason why the pruning is correct, now let us examine
the pruning more closely. The reason that we can discard the first
tuple in R′1 (call it t′11) as well as the first tuple in R2 (call it t21),
hence avoiding the join operation that would have otherwise pro-
duced Tuple 1 through Tuple 3 in R12, is that by Theorem 3.2, the
probability of any tuple t in R12 containing either t′11 or t21 must
not exceed the probability of t′11 or t21 themselves (both below the

threshold). Since projections do not change the tuple probabilities
(see Section 3.3 for details), the tuples in R3 projected from Tuple
1 to Tuple 3 in R12 also have probabilities below the threshold,
hence cannot be in the final results. Note that in pruning Tuples 1
to 3 inR12, we do not need to worry about the dependency between
attributes A and B or that between C and D. Using Theorem 3.2,
we simply prune based on the probabilities of t′11 and t21.

From Theorem 3.2, we obtain the following corollary:

COROLLARY 3.4. Given a tuple t and any set of attributes t.S ⊆
t, we have Pr(t) ≤ Pr(t.S).

PROOF. The tuple probability Pr(t) = Pr(t.S, t.S′) where
t.S′ ∪ t.S = t and t.S′ ∩ t.S = ∅. From Theorem 3.2, we know
that Pr(t) ≤ min(Pr(t.S), P r(t.S′)) ≤ Pr(t.S).

The optimization rule below can be deduced immediately from
Corollary 3.4:

Optimization Rule 2. Given table T (ΣT ,∆T ) and PTQ with
threshold θ, ∀Si ∈ ∆T in tuple t, Pr(t.Si) < θ ⇒ Pr(t) < θ.

In other words, if there exists any dependency set with probabil-
ity below θ, we can immediately prune the tuple away knowing that
there is no way for the whole tuple to meet the threshold.

3.2 Selection
For selection operator σ, Optimization Rule 1 and Rule 2 both

apply. We can first use them to prune away tuples without eval-
uating the selection predicate. For the remaining tuples, however,
we have to compute the final probability that the tuple satisfies the
predicate. Our optimization goal here is then to estimate this prob-
ability earlier to facilitate pruning.

Let Sc be the set of attributes involved in the selection predicate
c. We refer to the probability that c holds for attributes Sc in tuple
t as Pr(t.c). Note that Pr(t.c) is not a tuple-level probability;
rather, it is a probability that is computed solely from t.Sc. The
following optimization rule holds for any selection predicate c (let
t′ = σc(t) where t ∈ R):

Optimization Rule 3. Pr(t.c) < θ ⇒ Pr(t′) < θ.
PROOF. We first compute Pr(t′) from Pr(t) as follows:

Pr(t′) =
Pr(t)

Pr(t.Sc)
· Pr(t.c)

The formula is based on the fact that the only difference between
Pr(t′) and Pr(t) results from the requirement that c should hold.
From Corollary 3.4, we have Pr(t) ≤ Pr(t.Sc), hence Pr(t′) ≤
Pr(t.c) < θ.

From Rule 3, we obtain the following equivalence: τθ(σc(R)) =
τθ(στθ(c)(R)), where τθ(c) means applying the threshold operator
to Pr(t.c) for relationR. Now we seek further optimizations based
on the form of the predicate c:

3.2.1 Simple Predicate
A simple predicate c involves at least one uncertain attribute (e.g.

U,U ′) and has one of the following forms: i) U op k ii) U op A
iii) U op U ′ , where A is a certain attribute, k is a constant number
and op is a comparison operation. For a simple predicate c, we use
Optimization Rule 3 for pruning. To further improve the efficiency
of pruning, we can build a Probabilistic Threshold Index (PTI) on
the uncertain attribute U [8]. PTI is built based on the concept
“x-bound” proposed by Cheng et al. [7], which is a probability
bound maintained in the nodes of an R-tree based index to facilitate
pruning for probabilistic threshold range queries. Such an index
exploits both the range predicate over an attribute and the threshold
predicate over the probability of the attribute within the range.



3.2.2 Complex Predicate
c is a boolean combination of predicates c1 and c2 usingAND(∧),

OR(∨),NOT (¬). We discuss the optimization for each combina-
tion below.

i) c1 ∧ c2: The following rule holds in this case.
Optimization Rule 4. Given a PTQ τθ(σc1∧c2(R)) and a tuple

t′ in the result table originated from tuple t in R, Pr(t.c1) < θ ∨
Pr(t.c2) < θ ⇒ Pr(t′) < θ.

PROOF. Let Pr(t.ci) < θ for some i ∈ {1, 2}, then Pr(t.(c1∧
c2)) ≤ Pr(t.ci) < θ. Let c = c1 ∧ c2, we have Pr(t.c) < θ. By
Optimization Rule 3, we conclude that Pr(t′) < θ.

From Rule 4, we can deduce the equivalence:

τθ(σc1∧c2(R)) = τθ(στθ(c1)(στθ(c2)(R)))

= τθ(στθ(c2)(στθ(c1)(R)))

EXAMPLE 3.5. Back to Example 3.1. The two selection pred-
icates are Speed > 70 and Make = ‘Toyota’. As seen earlier,
with Optimization Rule 1, we can prune the first two tuples away
with the 0.7 threshold. By further computing Pr(Make = ‘Toy-
ota’) = 0.5 for the last tuple, we can immediately claim that no
tuple in the relation satisfies this PTQ.

ii) ¬c1: Let Sc1 be the set of attributes in c1, then we have:
Optimization Rule 5. Given a PTQ τθ(σ¬c1(R)) and a tuple t, if
Pr(t.c1) > 1− θ or Pr(t.c1) > Pr(t.Sc1)− θ, then Pr(t′) < θ.

PROOF. We first compute Pr(t′) from Pr(t):

Pr(t′) =
Pr(t)

Pr(t.Sc1)
· (Pr(t.Sc1)− Pr(t.c1))

Since Pr(t) ≤ Pr(t.Sc1) from Corollary 3.4, we have:

Pr(t′) ≤ Pr(t.Sc1)− Pr(t.c1) ≤ 1− Pr(t.c1) (3)

If either Pr(t.c1) > 1 − θ or Pr(t.c1) > Pr(t.Sc1) − θ holds,
then (3) < θ. Hence Pr(t′) < θ.

iii) c1 ∨ c2: Since c1 ∨ c2 = ¬(¬c1 ∧ ¬c2), the probability

Pr(t.c1 ∨ c2) = Pr (t.(¬(¬c1 ∧ ¬c2)))

= Pr(t.Sc1 , t.Sc2)− Pr(t.(¬c1 ∧ ¬c2)) ≤ Pr(t.Sc1 , t.Sc2)

where Sc1 and Sc2 are the set of attributes in c1 and c2. Intuitively,
probability Pr(t.Sc1 , t.Sc2) is the joint probability mass of the at-
tributes involved in c1 and c2 without imposing either predicate –
applying c1 or c2 will only decrease this probability.

Optimization Rule 6. Given a PTQ τθ(σc1∨c2(R)) and a tuple
t, Pr(t.Sc1 , t.Sc2) < θ ⇒ Pr(t′) < θ.

PROOF. We know from the above equation thatPr(t.(c1∨c2)) ≤
Pr(t.Sc1 , t.Sc2) < θ. Let c = c1 ∨ c2. From Rule 3, we conclude
that Pr(t′) < θ.

EXAMPLE 3.6. Suppose a tuple t in relation R with two uncer-
tain attributes a {2: 0.1, 4: 0.2} and b {1: 0.5, 2: 0.1}. Consider
PTQ τ0.2(σc1∨c2(R)) where c1 is a > 3 and c2 is b < 2. Since
Pr(a, b) = 0.3 × 0.6 = 0.18 < 0.2, we can immediately discard
t without evaluating the predicates.

The corollary below follows from Rule 6 and Theorem 3.2:

COROLLARY 3.7. Given a PTQ τθ(σc1∨c2(R)) and a tuple t,
Pr(t.Sc1) < θ ∨ Pr(t.Sc2) < θ ⇒ Pr(t′) < θ.

PROOF. From Theorem 3.2, we know that

Pr(t.Sc1 , t.Sc2) ≤ min(Pr(t.Sc1), P r(t.Sc2))

≤ Pr(t.Sci) < θ

where i ∈ {1, 2}. From Rule 6, we know Pr(t′) < θ.

3.3 Projection
For projections πĀ, where Ā is the set of attributes to be pro-

jected, let Pr(t) and Pr(t′) be the tuple probability of t before
and after projection, we introduce the lemma below, which comes
from [23] and is also clear from the possible world semantics:

LEMMA 3.8. For a given tuple t, any projection on t does not
change the tuple probability.

From Optimization Rule 1 and Lemma 3.8, we can easily deduce
the following optimization rule for projections:

Optimization Rule 7. For threshold queries based on projec-
tions, we have τθ(πĀ(R)) = πĀ(τθ(R)).

The above rule can be regarded as a special case of Rule 1,
where the outer τθ is no longer needed since the projection does
not change the tuple probability, if no duplicate elimination is en-
forced. Otherwise, the above optimization rule does not hold, as
the probabilities after duplicate elimination may increase.

3.4 Cartesian Product
Cartesian product between two relations R1 and R2 is one of

the most expensive operators. If R1 has m tuples and R2 has n
tuples, the complexity of performing Cartesian product is O(mn).
Our optimization goal is then to reduce the number of tuples that
need to be evaluated from either relation and prune away as many
tuples as possible without dropping any potential result. Let t1, t2
be tuples in R1 and R2. Let t12 be a tuple in R1 ×R2. We have:

Optimization Rule 8. If Pr(t1) < θ or Pr(t2) < θ, then
Pr(t12) < θ.

PROOF. From Theorem 3.2, we know that

Pr(t12) = Pr(t1, t2) ≤ min(Pr(t1), P r(t2))

If either Pr(t1) or Pr(t2) is below θ, then Pr(t12) < θ.

From Rule 8, we obtain the equivalence τθ(R1×R2) = τθ(τθ(R1)×
τθ(R2)). By applying this rule, we may filter out a large number of
tuples fromR1 andR2 before performingR1×R2. If the two rela-
tions are huge, this reduces many I/O operations that are otherwise
unavoidable during the Cartesian product execution, thus making
PTQ processing much more efficient.

3.5 Join
The join operator ./c can be considered as a selection after per-

forming the Cartesian product, i.e., R1 ./c R2 = σc(R1 × R2),
where R1 and R2 are two relations. We can employ optimization
rules for Cartesian product and selection to do the join. Moreover,
if c only involves attributes from a single relation R, we can per-
form σc(R) before the Cartesian product to reduce the number of
tuples from R that need to be checked.

4. PLAN OPTIMIZATION
Now that we have optimization rules for individual operators,

we can apply them to queries with combined operators. Let us first
review our running example (let θ = 0.4) in Figure 2. The query
is: τ0.4(πR1.C((σR1.C<3(R1)) ./R1.A<R2.B R2)). Let predicate
c1 be R1.C < 3 and c12 be R1.A < R2.B. Using Optimization
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Figure 3: The PTQ query plan after optimizations

Rules 1, 3, 7 and 8, we “trickle down” τ0.4 along the query plan
tree and equivalently, we execute the following plan P instead:

P = πR1.C(τ0.4(στ0.4(c12)(τ0.4(στ0.4(c1)(τ0.4(R1)))×τ0.4(R2))))
(4)

Note that we execute τ0.4 from inside out (τ0.4s in inner parenthe-
ses are executed first): If a tuple can be pruned with some inner
τ0.4, we can discard the tuple right away without completing the
whole evaluation. The query plan tree corresponding to Equation
4 is shown in Figure 3. We show below how various optimization
rules work together in pruning for a complicated PTQ with selec-
tions, projections and joins all present:

In Equation 4, though nothing is pruned by executing τ0.4(R1)
(See Figure 1: The two tuples of R1 have probabilities 1 and 0.7
each), we can use τ0.4(c1) to prune the first tuple of R′1 away, as a
result of Optimization Rule 3. The first tuple of R2 is also pruned
away with Rule 1 by executing τ0.4(R2). The pruning of tuples
in R′1 and R2 before the join is a result of applying Rule 8, which
leaves us with only one join operation to do: Joining Tuple 2 from
R′1 and Tuple 2 from R2. Tracing back to their history in Figure 1,
we correctly compute the joining tuple to be:

A B C D
(1, 3): 0.7 (1, 6): 0.6

Its tuple probability is 0.7 ∗ 0.6 = 0.42 > 0.4. According
to Optimization Rule 7, the projection does not change the tuple
probability. We hence return the projected tuple as the final answer
(Tuple 4 of R3 in Figure 1).

As we can see from Section 3, our contributions lie in providing
a new way of optimizing probabilistic threshold queries that is gen-
eral, and similar to the traditional approach for optimization. The
merit of the approach is not in the complexity of the proposed rules,
rather in their simplicity and easy applicability while ensuring cor-
rect evaluation with respect to possible world semantics.

Generally, given a query plan P of a PTQ in which the threshold
is placed at the end of the query, our goal for PTQ optimization
is to find an equivalent query plan P ′ such that we can prune as
many tuples as possible by leveraging the threshold (i.e., applying
the threshold operator) during the query evaluation while keeping
the total cost low. Our approach is to start with a plan P that is
guaranteed to be safe (through the use of histories and dependency
sets) and then apply optimization rules to generate equivalent plans
that are also all guaranteed to be safe (the rules ensure correct eval-
uation). Since there are usually multiple optimization rules appli-

TS SID xpos ypos

14:16:20.50 2242 prod(Gaus(327, 20), Gaus(296, 20))
14:16:20.50 2243 prod(Gaus(338, 61), Gaus(293, 61))
14:16:20.50 2244 prod(Gaus(319, 17), Gaus(110, 17))
14:16:20.50 2245 prod(Gaus(315, 19), Gaus(101, 19))
14:16:20.50 2246 prod(Gaus(327, 42), Gaus(287, 42))

Table 3: Sensor Data Set Schema

TupleID xpos ypos

1
(11.34, 978.30): 0.12
(13.74, 965.47): 0.24
(9.68, 972.12): 0.15

2 (120.89, 201.55): 0.40
(119.45, 195.72): 0.38

Table 4: Synthetic Data Set Schema

cable for P , we can generate multiple equivalent plans by applying
different sets of rules or by applying the same set of rules in dif-
ferent order. Currently we apply the heuristic of pushing down the
threshold operator along the query plan as much as possible. For
future work, we plan to design a cost estimation model for thresh-
old queries on uncertain data, and integrate it into the query op-
timizer in PostgreSQL for full automation of our threshold query
optimization.

5. EXPERIMENTAL EVALUATION
We use our PTQ optimization rules in the Orion system [23] (im-

plemented within PostgreSQL). The goal of our experiments is to
validate the effectiveness of our optimization rules proposed in Sec-
tion 3 on both synthetic and real data sets.

5.1 Data Sets
We use two data sets in our experiment: One is a real data set for

attributes with continuous uncertainty, and the other is a synthetic
data set for attributes with discrete uncertainty.

The real data set comes from a sensor application that monitors
the movement of people within a building using 802.11-based sen-
sors that report approximate locations in real-time. Each user is
tagged with sensors that report their readings to a central database.
Each tuple consists of a sensor ID (SID) that identifies the sensor,
the time stamp (TS) of the measurement, and the measured location
(xpos, ypos). Due to the calibrated errors with the sensors, the po-
sitions are reported with uncertainty represented as Gaussian distri-
butions around the reported locations. We use it as an example of
continuous uncertain attributes. Table 3 shows the first 5 tuples in
this sensor data set. The notation prod(Gaus(µ1, σ

2
1), Gaus(µ2, σ

2
2))

stands for the joint pdf of the Gaussian distributions of xpos and
ypos (as introduced in [23]), where µ1 (µ2) and σ2

1 (σ2
2) are the

mean and the variance of xpos (ypos). The cumulative probability
of the joint pdf is 1, hence the tuple probability is 1 for all tuples.

The synthetic data set that we generate is a simulation of the real
sensor data set with xpos and ypos, having discrete uncertainty.
We generate 100,000 tuples in total. Each tuple has a TupleID,
along with xpos and ypos values that are jointly distributed as one
dependency set, as shown in Table 4. The number of instances in
the dependency set, k, is uniformly distributed between 1 and 10.
Unlike the real data set, the tuple probability of the synthetic data
set (equals the total probability of the dependency set) is randomly
generated from 0.001 to 1. The probabilities of the instances are
generated randomly and sum up to this total probability. The values



of both attributes xpos and ypos are in the range [1, 1000]. For
each uncertain attribute in each tuple, we randomly pick a central
point center in [1, 1000]. We also generate the spread of its
instance values in the tuple that obeys a Gaussian distribution with
mean 10 and variance 2, which roughly corresponds to 1% of the
entire range. With the center and spread fixed, we can randomly
generate the values of the k instances such that they are within the
range [center - spread /2, center + spread /2]. Unless
specified otherwise, the default value of the threshold is 0.4 for all
experiments, and the default size of the real and synthetic data sets
are 10,000 and 100,000 tuples each.

5.2 Query Examples
Below we describe the PTQ queries used in our experiment to

test the performance of our optimization rules. We denote the table
as T , and uncertain attributes as U and U ′. The value of an uncer-
tain attribute is denoted as u or u′. We compare our optimizations
against the unoptimized evaluations of the queries. Since proba-
bilistic query evaluation involves using non-standard relational op-
erators (viz. floor, product, marginalize), the optimization avail-
able in standard PostgreSQL cannot optimize these operations or
the threshold operator. Thus the base naïve case that we compare
our optimizations to executes the query using Orion operators and
then applies the threshold operator to all resulting tuples, retaining
only those that meet the overall probability threshold.

The list of queries used in our experiments are given below.

Q1: SELECT * FROM T

This simple query illustrates the power of Optimization Rule 1.
The result should only return those tuples with tuple probability
greater than the threshold. To make use of the rule, a B-tree index
is created on tuple probabilities and used to prune out all tuples
with probabilities below the threshold θ.

Q2: SELECT * FROM T WHERE U > u

This query benefits from Rule 3 in addition to Rule 1. In order to
use Rule 3, it is necessary to support threshold range queries using a
PTI index, which is built on attribute U to prune out all tuples with
Pr(U > u) < θ. A B-tree index on the original tuple probabilities
is also maintained as above for Rule 1 to be applicable.

Q3: SELECT * FROM T WHERE U > u AND U’ < u’

This query benefits from Optimization Rule 4. We build PTI
indices on attributes U and U ′, separately, to prune out tuples with
either Pr(U > u) < θ or Pr(U ′ < u′) < θ.

Q4: SELECT * FROM T WHERE U > u OR U’ < u’

This query demonstrates the effectiveness of Optimization Rule
6. By pruning tuples whose attribute set U ∪ U ′ has a probability
below the threshold.

Q5: SELECT U FROM T

This query benefits from both Rule 1 and Rule 7. Projection
does not affect the tuple probabilities. Hence a B-tree index on
tuple probabilities is enough for pruning unqualified tuples.

Q6: SELECT * FROM T1 INNER JOIN T2
ON T1.TupleID = T2.TupleID

A B-tree index on the tuple probabilities of T1 and another for
T2 would suffice for leveraging Optimization Rule 8 to reduce the
number of join evaluations that are needed for the inner join query.

Q7: SELECT TT1.U FROM (
(SELECT * FROM T1 WHERE T1.U > u AS TT1)
INNER JOIN
(SELECT * FROM T2
WHERE T2.U > u AND T2.U’ < u’ AS TT2)

ON TT1.TupleID = TT2.TupleID)

This is an example of a complicated query similar to our example
query in Figure 1. It uses several optimization rules: Optimization
Rules 1, 3, 4, 7 and 8. These rules work together to ensure that
the threshold operator is pushed down the query plan tree as far as
possible so that unqualified tuples from either table T1 or T2 can be
pruned away before the join and unqualified tuples from the joined
table can also be discarded promptly.

5.3 Experimental Results
Our experiments compare the optimized PTQ execution with the

base case, i.e., the naïve approach that does not use any optimiza-
tion rules that we proposed earlier. We call them “optim” and
“naïve” respectively. We now show how our optimization rules are
actually written in the form of SQL queries. Consider query Q7. If
the threshold is p, this query in the naïve form is written as:

SELECT TT1.U FROM (
(SELECT * FROM T1 WHERE T1.U > u AS TT1)
INNER JOIN (SELECT * FROM T2 WHERE T2.U > u

AND T2.U’ < u’ AS TT2)
ON TT1.TupleID = TT2.TupleID)

WHERE mass(TT1.U) >= p

In the optimized version, this query is written like this:

SELECT TT1.U FROM (
(SELECT TupleID, floor(U, U <= u), U’ FROM T1

WHERE prob > p AND T1.U >? (u, p) AS TT1)
INNER JOIN
(SELECT TupleID, floor(U, U <= u),

floor(U’, U’ >= u’) FROM T2
WHERE prob > p AND T2.U >? (u, p)
AND T2.U’ <? (u’, p) AS TT2)

ON TT1.TupleID = TT2.TupleID)
WHERE mass(TT1.U) >= p

“>? (x,p)” and “<? (x,p)” are operators defined in Orion which
use the PTI index for value x and threshold p. mass is a function
that calculates the probability mass of an uncertain variable. The
function floor zeroes out part of the uncertain attribute’s pdf that
does not satisfy the predicate (Section 2.2). We see that TT1 in the
optim query is defined using Rules 1 and 3, TT2 is defined using
Rules 1, 3 and 4, the join is done with Rule 8 and the projection
uses Rule 7. We evaluate all queries from Q1 through Q7 on both
real and synthetic data sets in the following aspects:

5.3.1 Effect of Data Set Size
Figure 4 and Figure 5 show the effect of data set size on the

run time of selection query Q1 and Q3. The threshold is fixed at
0.4. Due to the small size of the real sensor data set we have, we
choose to perform this test on the synthetic data set alone. Let the
synthetic data set we generated be T . We vary the data set size by
selecting the desired number of tuples from T . We can see in Figure
4 that the time it takes for the naïve approach to execute the query
is approximately twice as long as that with optimizations. As the
data size increases, the time cost of both the naïve approach and the
optimization approach increases steadily, and the optimized query
runs consistently faster than the original query. The same holds for
Q3, as shown in Figure 5.
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Figure 4: Effect of data size on Q1
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Figure 5: Effect of data size on Q3
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Figure 6: Effect of data size on Q6
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Figure 7: Query selectivity of Q2, Q3, Q4
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Figure 8: Naive-optim ratio for Q2-4
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Figure 9: Naive-optim ratio for Q1, Q5

For the join query Q6, we generate two tables T1 and T2 from
T . T1 contains all tuples from T whose xpos is greater than 300
while T2 contains all tuples from T whose ypos is less than 600.
From T1 and T2, we obtain two tables by selecting the desired num-
ber of tuples from T1 and T2 (the number varies from 500 each to
1000 each) as the two tables for the join operation. We compare
the times for running optim and naïve, where optim utilizes B-trees
on the tuple probabilities of both tables (i.e., optim implements our
Optimization Rule 8). In contrast, naïve does not apply the opti-
mization rule, and always needs to check every pair of tuples from
the two tables for the join operation. The result in Figure 6 (the
data set size here is the size of the table after the join) shows that
Optimization Rule 8 significantly contributes to better performance
of Q6 in terms of run time. The difference between the run time of
naïve and that of optim increases as data size increases. Overall, the
time increase of naïve is much more significant than that of optim.

5.3.2 Effect of Threshold
The threshold of a PTQ plays an important part in answering

the query: Different thresholds result in different sizes of the PTQ
result set – the larger the threshold θ, the smaller the set. This
is because a PTQ returns all tuples in a table that satisfy the query
with probability at least θ. Figure 7 gives a comparison between the
selectivity of different thresholds for Q2, Q3 and Q4 on the sensor
data set. All three queries are selections with predicates. We define
selectivity as the ratio of the size of the PTQ result set and the size
of the original data set. With an increasing threshold, all queries
observe a consistent decrease in the selectivity of query results, as
more tuples become unqualified for the threshold.

Moreover, the threshold also affects the run time of the query,
as shown in Figure 8 on the sensor data set for the same queries.
We compute the ratio of naïve’s run time and our optim’s run time
for thresholds from 0.1 to 0.9. Obviously, the higher the ratio is,
the better our PTQ optimizations are. Figure 8 shows that as the

threshold increases, the run time ratio also increases in general and
reaches its peak when the threshold is 0.9. Below we refer to this
ratio as the “naïve-optim ratio”.

We perform the same experiment for simple selection and pro-
jection (i.e., Q1 and Q5) on the sensor data set, and the result is
shown in Figure 9. Compared with Figure 8, Figure 9 has a similar
increasing trend of the naïve-optim ratio for both Q1 and Q5. How-
ever, the actual value of the ratio is much higher in Figure 9 than
in Figure 8. This is because for Q1 and Q5 that use Optimization
Rule 1 and Rule 7 respectively, no PTI index is needed. Only a
B-tree on the tuple probability is used for the optimization. Since
querying a PTI is more complex than querying a B-tree (see [8] for
PTI details), the time involved in executing a threshold query with
PTI is much longer, i.e., the run time of optim for Q2, Q3 and Q4
is much longer. This is verified in Figure 10 along with the corre-
sponding run time of naïve (threshold fixed at 0.6). We can see that
naïve takes significantly longer times to execute Q1 and Q5 than
optim, while the difference is not as big for Q2 through Q4, result-
ing in higher naïve-optim ratios in Figure 9 than those in Figure
8. In fact, the ratio is always well above 1 for Q1 and Q5 regard-
less of the threshold (Figure 9) while the ratio is sometimes below
1 for Q2, Q3 and Q4 when the threshold is small (Figure 8). The
reason for optim to run slower than naïve in the latter case is the
overhead incurred by querying PTI exceeds the benefit from using
PTI to prune tuples - when the threshold is small, it is less likely
for the PTI to prune large number of tuples away.

Finally, for joins we plot the run time of optim and naïve on the
real and synthetic data sets in Figure 11 and Figure 12 respectively.
For both sets, the advantage of optim is apparent. While the thresh-
old has little effect on the run time of naïve, it has dramatic impact
on the run time of optim: the bigger the threshold is, the faster the
query runs. This is due to the fact that the run time of optim heavily
depends on thresholds: with a high threshold, Optimization Rule 8
is able to prune a large number of tuples away from both sides, pre-
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Figure 10: Run time of naïve and optim
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Figure 11: For Q6 on sensor data

0

100

200

300

400

500

600

700

800

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ti
m

e
 (

m
s)

threshold

naive optim

Figure 12: For Q6 on synthetic data
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Figure 13: Effect of pruning by optimization rules

venting large numbers of tuples from further evaluation. This saves
significant time in join processing. On the contrary, naïve always
needs to fully evaluate every pair of join tuples regardless of the
threshold.

5.3.3 Effect of Optimization Rules
Having evaluated basic SQL queries for selection, projection and

join (Q1 through Q6), we now evaluate a more complicated SQL
query that combines all the above operations in one query and lever-
ages multiple optimization rules for faster query execution.

We use Q7 as an example of such queries. The goal of our ex-
periment on Q7 is to verify the effectiveness of different optimiza-
tion rules in pruning away tuples so that they will not be further
evaluated. As we know from Section 5.2, Q7 benefits from Opti-
mization Rules 1, 3, 4, 7 and 8. In Figure 13, we show the pruning
percentage (number of join tuples pruned over the total number of
join tuples) by applying Rules 1, 3, 4 and 8 separately. Note that
here, we do not measure the pruning percentage for Rule 7, since
Rule 7 is equivalent to Rule 1 in terms of pruning (projections do
not change the tuple probability). While the first three rules are
measured individually, Rule 8 is actually a combination of all these
rules, since we need them to optimize for T1 and T2 before joining
them together. Also, for Rule 1, we measure the pruning percent-
age for both T1 and T2. To distinguish the two, we call the first
Rule 1a and the second Rule 1b. As we can see from Figure 13,
Rule 8 has the most powerful pruning capability, discarding almost
90% of all tuples due to its high selectivity from both T1 and T2.

6. RELATED WORK
Much research has been done in designing uncertain databases

[2, 5, 23, 28, 14, 22, 18]. A key challenge is to ensure the cor-
rectness of query processing given dependencies between uncertain
data that are either inherent in data or arise during query evaluation

(e.g., as a result of joins). For example, MystiQ [5] limits queries
evaluation to safe plans which are guaranteed to generate correct
results (with respect to PWS) [10]. However, safe plans are not
always the most efficient plans and may not even exist for certain
queries. Trio [2, 21] uses lineage to explicitly capture data correla-
tions and efficiently compute confidence. Their query evaluation is
not restricted to safe plans and is separated from confidence compu-
tation. Other tools to capture dependencies are also proposed, such
as factor tables [22], world tables [14] and history [23] (proposed
in the Orion model [23]). Unlike MystiQ [5], Trio [2] or MayBMS
[14], Orion currently does not support duplicate elimination (partly
due to the difficulty of defining duplicates with continuous uncer-
tainty), i.e., there are no disjunction dependencies between tuples.
History is updated with each query operation and the confidence
of a tuple is computed at the end of the query according to his-
tory, similar to the lineage approach [21]. History also ensures
that the confidence computed at the end is always correct (without
eliminating duplicates), hence we do not need to identify a “safe
plan” first from the query before executing the plan. The optimiza-
tion rules that we propose for threshold queries in this paper aim
to avoid unnecessary confidence computations if we already know
during the query evaluation that the final confidences of certain tu-
ples will not meet the given threshold. Our optimization rules are
designed for the current Orion model without duplicate elimination.
In fact, the threshold may no longer be able to “trickle” through the
query plan tree with correctness guarantees if duplicate elimination
is supported.

While many uncertain data models assume tuple independence
or tuple-level dependencies, Orion [23] and MayBMS [14] are able
to capture uncertainty at attribute level. In particular, Orion handles
dependencies between arbitrary attribute sets and is the first model
to handle continuous uncertainty as seen in sensor networks.

Apart from modeling uncertain data, much work focuses on solv-
ing specific problems for uncertain data, such as the nearest-neighbor
problem [3, 4], indexing [8, 1, 15], ranking [24, 13, 16, 12, 9],
range queries [27, 26, 25], skyline queries [17, 20, 29], join pro-
cessing [7], etc. Among these, the probabilistic threshold query
is one of the most common queries over probabilistic data, which
returns results satisfying the query with probabilities that meet the
threshold. Optimizations can be employed to leverage the threshold
for pruning during query evaluation so that all results that have no
hope of meeting the threshold can be discarded as early as possible.
For example, [6] proposed the concept of the “constrained proba-
bilistic nearest-neighbor query” with a probability threshold and an
error tolerance to save expensive computations of the exact nearest-
neighbor probabilities. Other examples of threshold queries include
the probabilistic threshold approach to ranking queries [13], range
queries [8] and skyline queries [20, 29].



While threshold queries have been studied in various settings
for probabilistic data, no previous work has focused on optimizing
threshold queries for basic database operations, such as selections,
projections and joins. Our work falls in this category, and is based
on the uncertain data model proposed in [23] which supports uncer-
tain attributes with probability density functions (pdfs). The clos-
est work to ours is [18, 19], which aims at optimizing conjunctive
queries without self-joins on data with discrete probabilistic dis-
tributions. In our model, both discrete and continuous uncertainty
exists, i.e., uncertain attributes have pdfs that are either discrete or
continuous. In addition, we use dependency sets to capture inher-
ent dependencies within uncertain data and history to capture de-
pendencies generated from query operations. We propose various
optimization rules for efficient execution of probabilistic threshold
queries under this model.

7. CONCLUSION AND FUTURE WORK
In this paper, we identify query equivalences for probabilistic

threshold queries (PTQ) and establish the correctness of pushing
down the threshold operator in a query plan. To the best of our
knowledge, this is the first attempt to solve the optimization prob-
lem of general SQL-based PTQ queries that involve selections, pro-
jections and joins. Our PTQ optimization works for the Orion un-
certain database model that supports both attribute and tuple un-
certainty as well as dependencies between arbitrary attribute sets.
The optimization rules are shown to be effective in reducing query
processing time through experiments on both real and synthetic
data sets. For future work, we plan to estimate the cost of thresh-
old query optimization for full automation within the PostgreSQL
query optimizer as well as to support duplicate elimination for pro-
jections and the set operations under Orion.
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